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ABSTRACT

This thesis aims to develop a design-oriented simulation approach for cloth

analysis. Our approach is built on the framework of NURBS-based isogeometric

analysis, which utilizes NURBS as the basis functions of analysis. NURBS is a class

of parametric geometry to represent curves and surfaces in computer-aided design

(CAD) programs. Recently, NURBS geometry has been used directly in analysis.

The overall goal of this thesis is to develop a computation infrastructure that enables

cloth analysis directly on NURBS geometry.

The advantage of NURBS in the context of cloth modeling lies in the geometric

smoothness. Using NURBS, it’s easy to construct surfaces with C1 or higher order

of continuity. Compared to C0 finite element geometry, the NURBS geometry is

more effective in capturing wrinkles and folders of cloth, which are characteristics

of cloth motion. The NURBS geometry enables the use of rotation-free Kirchhoff-

Love shell. The rotation-free shell model not only saves freedoms, but also makes the

contact/impact treatment much easier.

The major contribution of this work is the development of a NURBS cloth

modeling approach. The mechanical model of cloth and its implementation with

NURBS geometry will be presented in detail. Proper constitutive laws are employed

for fabric materials. Since NURBS geometry from CAD typically contains multiple

patches and trimmed patches, a certain treatment is proposed so that geometry can

be used directly in analysis.
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Another contribution of this work relates to a contact/impact algorithm. Con-

tact problems in cloth simulation have been a bottleneck of continuum-based ap-

proach. Since the general contact method doesn’t work well for cloth simulation, a

special contact treatment is developed. The present contact model distinguishes three

types of contact interactions. The first is the persistent contact force. This force in

essence is the traditional penalty force, but is applied when a contact pair is within a

separation tolerance instead of being penetrated. This essentially smears the abrupt

contact reaction into a relatively smooth force defined only a small thickness. The

second is trajectory impact, which deals with the reaction when impact occurs in a

time step. The treatment ensures that a point stays on a same side of the surface it

impacts on. The third is self-intersection. Intersection resorting force is introduced

when the initial configuration has self-intersections, or when the trajectory impact

force fails to eliminate all the collisions. We proposed a new method, the method of

area minimization, to handle intersections.

The contact models have been integrated into an operator-split integration

algorithm. A notable feature of this integration is that the contact/impact response

is singled out from the momentum equation.

This work also proposes a continuum-based strain limiting scheme. Because

the in-plane stiffness of cloth is much higher than the bending stiffness, numerical

difficulty is encountered in either implicit or explicit time integration. The strain

limiting is a numerical technique that formulates the in-plane response as a constraint

problem to allow the use of lower in-plane stiffness.

iv



www.manaraa.com

A number of examples are presented to show the performance of the proposed

approach. In the wrinkling study, the simulated wrinkle pattern looks similar with

the experimental results. In the contact study, it is found that the current method

can accurately recover a constant contact pressure field (press patch test), can handle

contacts of multi-layer folds and produce realistic draping effect. The intersection

resolution method is illustrated to be robust to various kinds of intersections. The

fast projection method can enlarge time steps while limiting the in-plane strain.

The current method is also applied to the analysis of a soft armor. Beginning

from CAD models the armor was put on the human body by a try-on simulation.

In multi-layer models, the intersection resolution method is used to resolve the in-

tersections between layers. Subsequently, cloth dynamics are simulated for different

human motions. Mechanical indexes such as the extra torque caused by the armors,

pressure force on the body, and stress in the armor are predicted. Parametric studies

are performed to investigate the change in mechanical metrics under altered design

parameters.

v



www.manaraa.com

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction to Cloth Simulation . . . . . . . . . . . . . . . . . . 1
1.1.1 Models of Cloth . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Time Integration . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Contact/Impact Scheme . . . . . . . . . . . . . . . . . . . 6
1.1.4 Strain Limiting . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.5 Other Related Work . . . . . . . . . . . . . . . . . . . . . 10

1.2 Introduction to Isogeometric Analysis . . . . . . . . . . . . . . . 11
1.3 Goals of Present Work . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . 13

2 ISOGEOMETRIC ANALYSIS OF CLOTH . . . . . . . . . . . . . . . 14

2.1 NURBS Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 NURBS Kirchhoff-Love Shell . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Constitutive Law . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Element Equation . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Multi-patch Model . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Trimmed NURBS . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Wrinkling in Shear . . . . . . . . . . . . . . . . . . . . . . 29
2.5.2 Cloth Draping over a Pedestal . . . . . . . . . . . . . . . 31
2.5.3 Trimmed NURBS . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 CONTACT/IMPACT SCHEME . . . . . . . . . . . . . . . . . . . . . 36

3.1 Time Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.1 Without Contact and Impact . . . . . . . . . . . . . . . . 36
3.1.2 With Contact and Impact . . . . . . . . . . . . . . . . . . 37

3.2 Persistent Contact Force . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Contact Detection . . . . . . . . . . . . . . . . . . . . . . 40

vi



www.manaraa.com

3.2.2 Contact Response . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2.1 Normal Contact . . . . . . . . . . . . . . . . . . 41
3.2.2.2 Tangential Contact . . . . . . . . . . . . . . . . 42

3.3 Trajectory Impact Force . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 Impact Detection . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Impact Response . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2.1 Normal Impact . . . . . . . . . . . . . . . . . . 44
3.3.2.2 Tangential Impact . . . . . . . . . . . . . . . . . 45

3.4 Intersection Resorting Force . . . . . . . . . . . . . . . . . . . . . 45
3.5 Distributing Contact Forces to Objects . . . . . . . . . . . . . . 46

3.5.1 Exchange of Linear Momentum in Lateral Impact . . . . 46
3.5.2 Determine Impulse on Control Points . . . . . . . . . . . 48

3.6 Axis Aligned Bounding Box Tree . . . . . . . . . . . . . . . . . . 49
3.6.1 Building the AABB Tree . . . . . . . . . . . . . . . . . . 49
3.6.2 Lazy Refitting . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.3 Fast Intersection Detecting . . . . . . . . . . . . . . . . . 50

3.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7.1 Contact Pressure . . . . . . . . . . . . . . . . . . . . . . . 52
3.7.2 Cloth Draping over a Sphere . . . . . . . . . . . . . . . . 54
3.7.3 Flag Draping . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.7.4 A Skirt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 INTERSECTION RESOLUTION . . . . . . . . . . . . . . . . . . . . 64

4.1 Minimization of Intersection Contour Length . . . . . . . . . . . 64
4.2 Minimization of Intersection Area . . . . . . . . . . . . . . . . . 66
4.3 Restoring Force . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.1 Typical Cases of Intersection Resolution . . . . . . . . . . 77
4.5.2 Vertical Drape . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5.3 Untangle layers of Soft Armors . . . . . . . . . . . . . . . 78

5 CONTINUUM-BASED STRAIN LIMITING . . . . . . . . . . . . . . 85

5.1 Background of Strain Limiting . . . . . . . . . . . . . . . . . . . 85
5.2 Augmented Lagrange Method . . . . . . . . . . . . . . . . . . . . 87
5.3 Fast Projection Method . . . . . . . . . . . . . . . . . . . . . . . 89
5.4 Constraint Points . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5 Stress Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 91
5.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6.1 Corner Kidnapped Cloth . . . . . . . . . . . . . . . . . . 92
5.6.2 Draping of Soft Armor . . . . . . . . . . . . . . . . . . . 93

vii



www.manaraa.com

5.6.3 Draping of a Skirt . . . . . . . . . . . . . . . . . . . . . . 96
5.6.4 Patch Test . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 SIMULATION OF SOFT ARMORS . . . . . . . . . . . . . . . . . . . 103

6.1 Integration with Digital Human Body . . . . . . . . . . . . . . . 103
6.2 Description of Soft Armor . . . . . . . . . . . . . . . . . . . . . . 104
6.3 Virtual Try-on of Soft Armors . . . . . . . . . . . . . . . . . . . 106
6.4 Walking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.5 Stair Climbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.6 Aiming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

viii



www.manaraa.com

LIST OF TABLES

Table

2.1 Wave lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Average CPU time cost . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 Summary of corner kidnapped cloth simulation . . . . . . . . . . . . . . 93

5.2 Summary of soft armor draping simulation . . . . . . . . . . . . . . . . . 95

5.3 Summary of skirt draping simulation . . . . . . . . . . . . . . . . . . . . 99

ix



www.manaraa.com

LIST OF FIGURES

Figure

2.1 Illustration of shell kinematics . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Moment-curvature curve in principal space . . . . . . . . . . . . . . . . . 21

2.3 Illustration of G1 multi-patch model . . . . . . . . . . . . . . . . . . . . 23

2.4 Illustration of trimmed NURBS . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Illustration of tessellating trimmed NURBS. (a) A trimmed NURBS in
CAD program; (b) A trimmed NURBS that is ready for analysis . . . . . 27

2.6 Illustration of polygon to triangles . . . . . . . . . . . . . . . . . . . . . 27

2.7 Wrinkling in shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Wrinkling under shear force . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.9 Initial configuration of clothdrapping over a pedestal . . . . . . . . . . . 31

2.10 Simulation results of cloth draping over a pedestal. . . . . . . . . . . . . 32

2.11 A trimmed-NURBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.12 Simulation of a trimmed-NURBS . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Illustration of persistent contact region . . . . . . . . . . . . . . . . . . . 41

3.2 Impact between a point and a triangle . . . . . . . . . . . . . . . . . . . 44

3.3 Flow chart of building AABB tree . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Schematics of the falling cloth problem . . . . . . . . . . . . . . . . . . . 53

3.5 Flat cloth quasi-static contact. (a) Normal displacement; (b) Normal pres-
sure; (c) Tangential displacement for µ = 0.2; (d) Friction for µ = 0.2; (e)
Tangential displacement for µ = tan 30◦; (f) Friction for µ = tan 30◦ . . . 55

x



www.manaraa.com

3.6 Initial configuration of the cloth that drapes over a sphere. Left: NURBS
mesh with 2048 cells; right: texture view. . . . . . . . . . . . . . . . . . . 57

3.7 Snapshots of draping process. . . . . . . . . . . . . . . . . . . . . . . . . 57

3.8 Total vertical contact force. (a) Evaluated over each time step; (b) aver-
aged over each frame (0.033s) . . . . . . . . . . . . . . . . . . . . . . . . 59

3.9 NURBS mesh of the flag . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.10 Snapshots of flag draping . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.11 2D design model of a skirt and a human body. . . . . . . . . . . . . . . . 62

3.12 Simulated try-on effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Intersection between two triangles. . . . . . . . . . . . . . . . . . . . . . 65

4.2 A closed contour divides a domain into two parts. . . . . . . . . . . . . . 67

4.3 Intersection segments inside an element. (a), (b), (c) are three types of
subchains. (d) shows an example that one element contains more than
one subchains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Intersection Comtour. (a) normal view; (b) exploded view. . . . . . . . . 73

4.5 An example of local minimization of contour length. (a) 0.0s (b) 0.1s,(c)
0.2s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Local minimization of contour length. . . . . . . . . . . . . . . . . . . . . 75

4.7 Both contours are closed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.8 One contour is closed while the other one is unclosed. . . . . . . . . . . . 76

4.9 Both contours are unclosed. . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.10 Vertical drape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.11 Simulation of multi-layer soft armors. . . . . . . . . . . . . . . . . . . . . 83

5.1 Constraint points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Corner kidnapped cloth at t = 0.6. . . . . . . . . . . . . . . . . . . . . . 94

xi



www.manaraa.com

5.3 Initial configuration of the soft armor . . . . . . . . . . . . . . . . . . . . 96

5.4 Upper-body armor after draping simulation. . . . . . . . . . . . . . . . 97

5.5 Lower-body armor after draping simulation. . . . . . . . . . . . . . . . . 98

5.6 Initial configuration of the skirt . . . . . . . . . . . . . . . . . . . . . . . 99

5.7 Skirt after draping simulation. . . . . . . . . . . . . . . . . . . . . . . . . 100

5.8 Stress of patch test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1 Work flow of cloth simulation . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 A set of soft armor. (a) Original design; (b) analysis-ready model. . . . . 105

6.3 Armor model before try-on simulation . . . . . . . . . . . . . . . . . . . 106

6.4 Put the shorts and belt n by virtual stitching . . . . . . . . . . . . . . . 108

6.5 Put the upper-body armor on by virtual projecting . . . . . . . . . . . . 108

6.6 Virtually trying on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.7 Contact forces of soft armor during walking . . . . . . . . . . . . . . . . 110

6.8 Torques on hip-thigh joints . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.9 Principle in-plane stress (N/m) of soft armor during walking . . . . . . . 112

6.10 A coarse mesh for convergence study . . . . . . . . . . . . . . . . . . . . 113

6.11 Influence of mesh size to the torques on hip joints . . . . . . . . . . . . . 114

6.12 Contact forces of soft armor (1/2 design thickness) during walking . . . . 115

6.13 Influence of thickness to the torques on hip joints . . . . . . . . . . . . . 117

6.14 Contact forces of soft armor during climbing stairs . . . . . . . . . . . . 118

6.15 Principle in-plane stress (N/m) of soft armor during climbing stairs . . . 119

6.16 Torques on hip joints during climbing stairs . . . . . . . . . . . . . . . . 120

xii



www.manaraa.com

6.17 Contact forces of soft armor (1/2 design thickness) during climbing stairs 121

6.18 Influence of thickness to the torques on hip joints . . . . . . . . . . . . . 122

6.19 Contact force of soft armors during aiming . . . . . . . . . . . . . . . . . 124

6.20 Principle in-plane stress (N/m) in aiming with armors . . . . . . . . . . 125

6.21 Torques on hip joints during aiming . . . . . . . . . . . . . . . . . . . . . 126

6.22 Contact force of soft armors (1/2 design thickness) during aiming . . . . 127

6.23 Influence of thickness to the torques on hip joints . . . . . . . . . . . . . 128

xiii



www.manaraa.com

1

CHAPTER 1
INTRODUCTION

1.1 Introduction to Cloth Simulation

Cloth simulation finds applications in the movie industry, garment design,

and electronic commerce. In the movie industry, cloth simulation is essential to

producing animated characters. The technology enables the production of visually

astonishing movies such as Ratatouille, Kung-Fu Panda, Wall-E, and Tangled [34].

Virtual characters such as Gollum, from Lord of the Rings, Jar-Jar and Yoda from

Star Wars, Davy Jones from Pirates of the Caribbean, and teddy bear from Ted, have

become more and more common in mainstream live-action movies [34]. In the garment

industry, virtual prototyping is becoming popular [46, 87]. Designers can “sew” cloth

patterns together, put them on a virtual model, and watch the try-on effect before

they make a real prototype. Successful cloth design software includes Optitex [54],

Marvelous Designers [42], etc. In the field of electronic commerce, the idea of using

cloth simulation for online virtual fitting rooms has been proposed for many years

[23]. Although there isn’t online fitting rooms using real-time cloth simulation by far,

we expect the technology will become popular in the future.

In spite of the broad applications, cloth simulation had not been widely used

until the recent decade. This is mainly because cloth simulation is difficult to realize

in finite element method. A piece of cloth tends to buckle under small compression or

shear force. In order to simulate the wrinkling and folding processes of cloth, we have
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to deal with buckling instability and post-buckling analysis. For an implicit method,

one has to solve nearly singular linear systems, which takes longer time to solve. The

explicit method does not entail solving linear system, but it requires very small time

steps. In most practical applications, cloth simulation is expected to be fast (several

minutes or even several seconds). Conventional simulation methods typically don’t

meet the efficiency requirement.

Another difficulty of cloth simulation is the complicated contact-impact pro-

cess. The difficulty of contact-impact in cloth simulation manifests on two fronts: a

piece of cloth can contact an external body or itself on either side, and it can change

the contact sides over time, making it difficult to delineate the contact side using a

pre-selected orientation. Also, in the context of the traditional penalty method, it

is difficult to select suitable penalty parameters. Given that the lateral stiffness of

cloth is very small, it is difficult to maintain numerical stability because a small lat-

eral force may result in an excessive perturbation. Delineating complicated contact

also requires to delicate contact detecting algorithms which also present challenge to

computation.

Another challenge of cloth simulation is how to effectively enforce realistic

strain on cloth. The bending stiffness of fabric material is far lower than in-plane

stiffness, and consequently, the in-plane strain in most cases is negligibly small, in-

visible to the naked eye. Mathematically, this gives rise to stiff differential equations.

However, using high physical in-plane stiffness brings in several numerical issues. For

explicit methods, the time step is determined by the highest stiffness in the system;
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a higher in-plane stiffness would force a small time step which is not necessary for

simulating the flexure response. The implicit method of Barraf [3] may allow large

time steps, but this method brings in fictional damp, which is proportional to in-plane

stiffness. Thus, in early simulations the physical in-plane stiffness was replaced by ar-

tificial low values. The main problem of lowering the in-plane stiffness is that the cloth

may stretch excessively. How to use lower stiffness while eliminating overstretching

efficiently is an important research topic.

Many novel ideas have been proposed to address the issues in cloth simulation.

Below, we will briefly summarize the major advances in the following subject areas:

(1) models of cloth; (2) methods of time integration; (3) contact-impact algorithm;

(4) strain limiting.

1.1.1 Models of Cloth

Models of cloth can be divided into two categories: the spring-based model

and the continuum-based model [88]. Spring-based model treats a piece of cloth as

a spring network connecting a set of mass points. Breen et al. [12, 13, 39] probably

were the first to simulate cloth by a spring-based model. Their original motivation

was to obtain better approximation to the testing data of wool, therefore their energy

function was a set of highly nonlinear springs. Provot [68] used a simpler linear spring

system, and his stiffness of spring was much lower than the experimental one. This

model was widely used in the graphics field because it is easy to implement, and

it provides fast simulation with reasonable results. Choi and Ko [19] proposed an
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immediate buckling spring model, which solved the instability problem of implicit

methods. Bridson et al. [16] proposed an explicit model of bending spring, which

gives better simulation results. Baraff et al. [3] and Grinspun et al. [36] introduced a

discrete shell model, which considers the in-plane deformation in a continuum manner

and the bending deformation in spring manner. A disadvantage of spring-based model

is that it is difficult to accurately reproduce the mechanical behavior of cloth. Studies

[12, 13] have attempted to determine spring parameters based on the stress-strain and

curvature-moment curves obtained from mechanical tests [45]. However, parameters

so obtained are mesh dependent and thus not easily transferable across networks of

different topologies.

Another family of models falls into the continuum approach, which treats the

cloth as continuum and uses the continuum mechanics law to describe the deforma-

tion. This approach has many advantages over the spring-based model. For example,

the material properties of the continuum approach is independent of the topology of

the grid. Another feature [43] of the continuum approach is that they can leverage

the existing research on material and geometric nonlinearity. Many continuum cloth

models have been proposed. Collier et al. [22] developed a shell element with finite

rotation and small strain to model the draping process of cotton and achieved good

agreement with experimental results. Gan et al. [32], Chen et al. [17], and Eischen et

al. [28] utilized a degenerated solid shell to simulate fabric draping. Man and Swan

et al. [60, 58, 59] used the continuum degenerated shell model to simulate the soft

armors. Kim [50] applied Simo’s geometrically exact shell [73, 74, 75] to model cloth.



www.manaraa.com

5

In addition to shell theories, Ascough et al. [2] modeled the cloth as a network of

beams, and Teng et al. [78] used the finite-volume method to simulate cloth. These

studies showed that, despite the coarse microstructure of fabric materials, continuum

theories can effectively capture the characteristics of cloth deformation. However,

the continuum simulations has not gained popularity, possibly due to the following

reasons: (1) they need more degrees of freedoms; (2) computation efficiency has been

low, lower than spring-based model ;(3) the contact/impact treatment has been a

bottle-neck [43].

1.1.2 Time Integration

Two integration schemes have dominated cloth simulation. One is called the

semi-implicit scheme, which was first introduced to the cloth simulation community

by Baraff and Witkin [3]. The semi-implicit scheme is based on the backward Eu-

ler method, but in solving the nonlinear equivalent equation with Newton-Raphson

method, the iteration is halted after the first iterative step. The semi-implicit scheme

is efficient because full Newton-Raphson iteration is avoided while large time step is

used. The drawback of Baraff’s scheme is that unrealistic damping significantly de-

grades the realism. The additional damping stems from two sources. The first is the

numerical error caused by the lack of nonlinear iteration. For instance, when a spring

rigidly rotates an angle, the stress should be zero. But in the semi-implicit, the stress

predicted by the first time of iteration is nozero, and this prediction will reduce the

rotation velocity. The second additional damping is the artificially big damping force
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introduced to avoid post-buckling instability. Baraff assumed the internal damping

force is in the same direction as the internal force, and its magnitude is proportional

to the strain rate. A high flexure damping coefficient helps to maintain the numeral

stability in cloth buckling. Choi and Ko [19] proposed an immediate buckling spring

model, which eliminates artificial damping. Choi and Ko [19] also introduced a 2nd

order backward Euler method to reduce the numerical damping. Oh et al. [64]

modified the standard Euler method in order to reduce numerical damping.

Another popular time integration scheme is the Velocity Verlet method. The

Velocity Verlet method was first applied to cloth simulation by Bridson et al. [16].

Velocity Verlet method is an implicit/explicit scheme. Its main idea is to solve the ve-

locity implicitly while updating the displacement term explicitly. The time increment

of Velocity Verlet method can be larger than that of pure explicit method. When

the damping coefficient matrix is simplified to a diagonal matrix, there is no need to

solve linear systems.

1.1.3 Contact/Impact Scheme

The treatment of contact/impact has been a bottleneck in cloth simulation.

According to how penetration is dealt with, there has been two main types of con-

tact/impact algorithms: the coupled approach and the decoupled approach. The

coupled approach considers the penetration conditions as constraints of cloth move-

ment [3, 34] and couples the contact condition with the solution of the dynamic

motion. This naturally calls for an implicit setting because the configuration at the
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end of time step is yet to be found. Thus an iteration of trial-and-test is necessary to

ensure penetration-free at the end of a time step [34]. The decoupled approach [15]

solves the momentum equation first without considering contact; if contact occurs,

the non-penetration condition will be enforced by applying the impulse explicitly.

The contact/impact response has been described mainly in two different ways:

the proximity model and the trajectory collision model (also known as continuous

contact model). The proximity model introduces a contact force when two pieces of

cloth in current configuration are very close [62, 3, 19]. This model is efficient, but

penetration could be missed when two points impact at high speed. The trajectory

collision model [62, 86] introduces an impact force when the trajectories of two prim-

itives impact during the current time step. Some researchers switched between these

two models [76]. Bridson [15] proposed a two-phase scheme to take advantage of both

models. The persistent contact model is applied first, which is expected to stop most

trajectory intersections. The impact model is then applied, resolving the remaining

trajectory penetrations. This sequential treatment fits naturally into an operator-

split integration framework. This scheme was shown to be efficient and robust for

complex problems.

In Bridson’s scheme, the combination of proximity and trajectory collision

models alone is still not sufficient to eliminate all penetrations - new penetrations

could be generated numerically. Bridson introduced a third filter: the rigid impact

zone (RIZ). In all the locations where the trajectory collision fails, the connected

nodes are considered as a RIZ, and all the nodes inside a RIZ are imposed to be
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a rigid body. A drawback of RIZ approach is that it also stops tangential sliding.

Harmon [37] proposed an implicit way to treat the missed collisions. Harmon consider

each penetration as an equation, and all the penetrations form a linear system. By

solving this linear system, which may be costly, all the penetrations could be resolved.

However, these history-dependent contact models will fail after the non-simulated

objects impose the cloth intersects [4].

In addition, both Bridson’s and Harmon’s models are unable to resolve initial

intersections. In simulating multi-layer garments, different layers of garments may be

designed and modeled in different spaces, and thus initial penetrations are frequently

encountered. As alluded above, for cloth simulation it is infeasible to use a predefined

surface orientation to delineate contact side. The approach by Bridson and others

essentially use the geometries at the current time step to enforce contact condition:

a contact point should stay on a same side of a contact surface. A pitfall of this

approach is that, one a point ends on the wrong side, the algorithm will try to

keep it there. Baraff [4] firstly proposed a history-free contact scheme, which allows

intersections to occur, and then resolves them either kinematically or kinetically.

Joining the element-element intersection segments, the two regions inside the same

intersection contour form a contact pair. Baraff’s scheme only works when both

sides of intersection contours are closed. Wicke [92] later extended baraff’s scheme to

arbitrary intersection types with the aid of 2D parametric domain.

Another way to resolve arbitrary kinds of intersections is the contour length

minimization method proposed by [89]. This methods considers the gradient of in-
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tersection contour length as the direction of resorting force, and thus it works for

both closed or unclosed contours. The contour minimization method was believed to

be more robust because an edge-polygon intersection missing from collision detection

will not break the algorithm. The major problem of Volino’s scheme is that it breaks

down when contour length is a local minimum or a reduction of the contour length

does not necessarily mean a reduction in the intersection area. A simple example of

local minimization is given when one rectangles inserts into another one.

This thesis proposes a method of intersection resolution that minimize the

intersection area. Minimizing the intersection area will leads to the elimination of

intersections, and local minimization status is nonexist.

1.1.4 Strain Limiting

Strain limiting means artificially reducing the in-plane stiffness while imposing

certain limits on the allowable strain range. In other word, the in-plane deformation is

formulated as a constraint problem. Provot [68] proposed an explicit method of strain

limiting that restores the overstretched springs by adjusting the particle position

directly. Because adjusting position of one spring may result in overstretching another

spring, an iteration was required. Both Jacobi iteration and Gauss-Seidel iteration

[15] were utilized, but neither can guarantee convergence.

The implicit method of strain limiting was also proposed [39, 38]. These ap-

proaches were mainly based on augmented Lagrange method. Goldenthal et al.[35]

proposed a fast projection scheme, which solve the constraint equation more effec-
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tively. The implicit method requires solving a linear system for each iteration, but it

can converge very fast.

The fast projection method used by Goldenthal et al. [35] constrained the

spring length in a weft- and warp- aligned quadrilateral grid. The method was limited

to this special grid configuration. To obtain a grid-independent strain limiting scheme,

one has to resort to the continuum models. Study on continuum-based strain limiting

has been rare. Thomaszewski et al. [84] proposed an explicit strain limiting for

triangular elements. This report appears to be the only work on continuum strain

limiting.

1.1.5 Other Related Work

There are many other important studies related to the cloth simulation, though

they are not the focus of this thesis. Oh et al. [65, 53] proposed a physically faithful

multigrid method, which could largely improve the simulation efficiency. Parallel

computing of cloth simulation was developed by Thomaszewski and Blochinger [83],

Selle et al. [71], and Kim et al. [48]. Bhat et al. [11] suggested to use videos

to evaluate the material parameters. Wang et al. [91] developed an example-based

wrinkle synthesis method to generate fine-scale details with coarse mesh. Kaldor et

al. [44] simulated knitted cloth in yarn level.

It is worth to note that the cloth modeling is a branch of physically-based

animation in computer graphics. Since the Lasseter’s discussion [52] and Terzopoulos

et. al’s seminal paper [80], significant contributions were made in simulating various
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objects, such as the simulation of rods [10], hairs [70], skins [61], fracture [77], fluid

[14] and so on. A detailed survey can be found in [33] and [63].

1.2 Introduction to Isogeometric Analysis

Isogeometric analysis is an advance of finite element; the essential idea is to

use the same basis in analysis as used in computer-aided design (CAD). directly in

analysis[40]. The aim of isogeometric analysis is to bridge the gap between CAD

programs and analysis, hence reducing the cost of FEM model generation. Hughes

et al. [40] were the first to propose the concept and framework of isogeometric anal-

ysis. Cottrell et al. and Bazilevs et al. [7] investigated the approximation property,

stability, and error estimates for h-refinement. Cottrell et al. [24] applied isogeomet-

ric analysis to structural vibrations and gave an accuracy study later [25]. Elguedj

et al. [29] proposed B-bar and F-bar projection methods for nearly incompressible

material in small or large deformation. An efficient quadrature scheme was proposed

by Hughes et al.[41]. Bazilevs [6] et al. used T-spline for analysis, which allows

for locally adaptive refinement. Kim proposed [49] an analysis scheme for trimmed-

NURBS, a more complex form of NURBS surfaces. Isogeometric analysis has been

applied to biomechanics, e.g., a patient-specific aneuysm model was introduced by

Bazilevs et al.[8]. A NURBS muscle model was introduced by Zhou and Lu [95]. Lu

[55] and Temizer et al.[27] proposed a contact scheme for NURBS-based isogeometric

analysis, and the accuracy of contact pressure was largely improved by the higher-

order geometry. NURBS-based shell elements were introduced by Kiendl et al. and
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Benson et al., for both Kirchhoff-Love shell [47] and Reissner-Mindlin shell [9]. A

NURBS-based continuum rod element was proposed by Lu [56, 57], which proved to

be much more efficient then the corresponding FE model. Isogeometric analysis was

also applied to topology optimization by Wall et al.[90], cho el al.[18] and Seo et al.

[72], and it was found that the shape sensitivity was enhanced.

1.3 Goals of Present Work

The goal of this dissertation is to develop a continuum-based cloth model with

high simulation efficiency and high ability of treating contact. The software derived

from this study should primarily be a design tool that aids garment or armor design,

but could also be used in animation. Specifically, we will pursue the following research

tasks:

(1) developing a NURBS-based isogeometric shell model and employing appro-

priate constitutive models for fabric material. The model should allow for trimmed

NURBS and multi-patch NURBS that are commonly used in garment design.

(2) developing a robust and efficient contact-impact algorithm capable of deal-

ing with complicated contact conditions including two-sided contact and self-contact.

(3) developing a continuum-based strain limiting algorithm to allow for large

time step while keeping in-plane strain small;

(4) testing and verifying the formulation using benchmark examples and garment-

level simulation.

(5) establishing a protocol that takes NURBS armor designs and pipelines
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them to analysis with minimal user interference.

1.4 Organization of the Thesis

The outline of this paper is as follows. Chapter 2 introduces the isogeometric

model of cloth. Chapter 3 introduces the time integration and the contact model. A

new area minimization method for intersection resolution is proposed in Chapter 4,

and a continuum-based fast projection method is proposed in Chapter 5. In chapter

6, the current simulation method is applied to the design of soft armor. Chapter 7

presents some conclusions and limitations of the current study.
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CHAPTER 2
ISOGEOMETRIC ANALYSIS OF CLOTH

We focus on thin cloth that can be effectively described by Kirchhoff-Love shell

theory. By thinness, one typically means that the thickness h is less than 1/20 of the

characteristic length in the lateral direction. The Kirchhoff-Love theory assumes that

the transverse shear is negligible and thus the shell kinetics is described by in-plane

stretching and lateral bending. In analysis, the Kirchhoff-Love element requires C1

continuity between elements, which is difficult to achieve in Lagrangian- or Hermite-

based finite element interpolations. NURBS geometry maintains a C1 or higher order

continuities by construction, and thus naturally supporting Kirchhoff-Love analysis

[47]. One of the advantages of NURBS Kirchhoff-Love element, in comparison to the

Reissner-Mindlin formulation in finite element geometry, e.g. [73, 74], is that only the

surface displacement is involved; no rotational degree-of-freedoms (DOFs) are needed.

Another attraction of the NURBS geometry, which possesses global smoothness, is

more suited for describing wrinkles or folds, which are the characteristics of cloth

motion. We expect that NURBS can better capture smooth motions and do so with

fewer DOFs compared to finite element method.

In a sense, the use of smooth geometry in cloth simulation is not novel.

Thomaszewski et al. [82] proposed the use of subdivision shells [21, 20]. B-splines and

NURBS have been used in physical modeling of deformable bodies in the Computer

Graphics and CAD communities [81, 79, 69], although they may not be specifically

for fabrics.
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In the practical application of isogeometric analysis, several kinds of special

geometries may be encountered. The first is the multi-patch model, in which one

model contains more than one NURBS patches. The relation of control points to

impose C1 continuity across patches is derived in this chapter. The second is the

trimmed NURBS. A novel scheme to handle the trimmed NURBS is also developed

in this chapter.

2.1 NURBS Geometry

NURBS is a parametric geometry used to represent curves and surfaces in

CAD. A NURBS curve is defined by a knot vector ξ, a set of control points {Qi}

and their weights {wi}, and a degree p. Complete coverage is provided by Piegl and

Tiller [26, 5, 67, 31].

C(ξ) =

∑n
i=1 Bi,p(ξ)wiQi∑n
i=1Bi,p(ξ)wi

(2.1)

or simply C(ξ) =
∑n

i=1 Ri(ξ)Qi with Ri =
Bi,p(ξ)wi∑n
j=1Bj,p(ξ)wi

. In Eq. (2.1), {Bi,p} are the B-

spline basis functions, which are completely defined by the knot vector and the degree.

The knot vector is a non-decreasing sequences of coordinates in the parametric space,

denoted as ξ = {ξ1, ξ2, · · · , ξn+p+1}. The B-spline basis functions follow a recursive

relation

Bi,p =
ξ − ξi
ξi+p − ξi

Bi,p−1 +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Bi+1,p−1 (2.2)

where for zero degree,

Bi,0 =


1 if ξi ≤ ξ < ξi+1

0 otherwise

(2.3)
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The knot vector specifies the divisions of the curve in the parametric space. Each

non-empty segment [ξ1, ξi+1] defines a Bezier segment. The interior knots can repeat

upto p times; with each repetition the degree of continuity at that knot reduces by

one. The first and last knots can repeat p + 1 times, in which case the B-spline is

interpolatory at the two ends. B-splines and NURBS enjoy many properties desirable

for geometric description and analysis. For a complete coverage, see [67].

A NURBS surface is constructed by taking the tensor-product of two NURBS

curves, giving the parametric form

S(ξ1, ξ2) =

∑n1

i=1

∑n2

j=1Bi,p(ξ
1)Bj,q(ξ

2)wijQij∑n1

i=1

∑n2

j=1Bi,p(ξ1)Bj,q(ξ2)wij
(2.4)

The control points Qij form a n1 × n2 net. The rectangle [ξ1
1 , ξ

1
n1+p+] × [ξ2

1 , ξ
1
n2+q+1]

defines the parametric domain of the NURBS surface, where each non-empty subdo-

main [ξ1
i , ξ

1
i+1]× [ξ2

j , ξ
1
j+1] specifies a Bezier element. Eq. (2.4) can be expressed in the

following form:

S(ξ1, ξ2) =
n∑
I=1

NI(ξ
1, ξ2)QI , n = n1 × n2 (2.5)

where the controls points and their interpolation functions are stored in vector form.

2.2 NURBS Kirchhoff-Love Shell

We focus on thin cloth that can be effectively described by Kirchhoff-Love shell

theory. By thinness, one typically means that the thickness h is less than 1/20 of

the characteristic length in the lateral direction. The current model can be applied

to most common fabric and soft armors, but it doesn’t work for very thick cloth or

armors.



www.manaraa.com

17

The Kirchhoff-Love theory assumes that the transverse shear is negligible and

thus the shell kinetics is described by in-plane stretching and lateral bending. In

analysis, the Kirchhoff-Love element requires C1 continuity between elements, which

is difficult to achieve in Lagrangian- or Hermite-based finite element interpolations.

NURBS geometry maintains C1 or higher order continuities by construction, thus nat-

urally supporting Kirchhoff-Love analysis [47]. The advantage of NURBS Kirchhoff-

Love element, in comparison to the Reissner-Mindlin formulation in finite element

geometry, e.g. [73, 74], is that only the surface displacement is involved; no rota-

tional DOFs are needed.

2.2.1 Kinematics

The NURBS formulation below follows Kiendl et. al. [47]. We use the same

set of NURBS basis functions to parameterize the reference and current configurations

of the cloth surface:

X =
n∑
I=1

NI(ξ
1, ξ2)QI

x =
n∑
I=1

NI(ξ
1, ξ2)qI

(2.6)

Here QI ’s are the reference coordinates of control points, and qI ’s the current coordi-

nates. The knot parameters ξ = (ξ1, ξ2) serves as the convected coordinates whereby

a fixed pair ξ represents a same material point throughout the deformation. These

two coordinates induce two convected surface basis vectors a1 = x,ξ1 , a2 = x,ξ2 span-

ning the tangent plane at every point on the surface. A line element in the current

configuration is thus represented as dx = a1dξ
1 + a2dξ

2. In the reference configu-
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ration, the surface bases are denoted by {A1,A2}, and a line element is given by

dX = A1dξ
1 + A2dξ

2. The basis vectors are illustrated in Fig. 2.1.

Figure 2.1: Illustration of shell kinematics

The unit normal a3 (in the current configuration) is

a3 =
a1 × a2

‖ a1 × a2 ‖
(2.7)

With respect to the convected basis vectors, the surface deformation tensor C and

the Green-Lagrangian strain E take the form

Cαβ = aα · aβ, α, β = 1, 2

Eαβ =
1

2
(aα · aβ −Aα ·Aβ) α, β = 1, 2

(2.8)

The surface curvature tensor κ is defined by

καβ = −∂a3

∂ξα
· aβ = a3 ·

∂2x

∂ξα∂ξβ
, α, β = 1, 2 (2.9)
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It is convenient to use a local orthonormal basis to perform the element com-

putations presented later. To this end we introduce a pair of orthonormal vectors

{Ē1, Ē2} point-wise in the tangent plane spanned by {A1, A2}. With respect to the

new bases, we express a line element as dX = Ē1dX̄1 + Ē2dX̄2. Locally, (dX̄1, dX̄2)

are related to (dξ1, dξ2) via[
dX̄1

dX̄2

]
=

[
Ē1 ·A1 Ē1 ·A2

Ē2 ·A1 Ē2 ·A2

] [
dξ1

dξ2

]
:= Jdξ (2.10)

Derivatives of a basis function N with respect to physical coordinates follow the chain

rule: [
N,X̄1

N,X̄2

]
= J−T

[
N,ξ1

N,ξ2

]
(2.11)

In the current configuration, the basis (ā2, ā2) convected from the physical basis

{Ē1, Ē2} are

āα :=
∂x

∂X̄1

=
∑
I

NI,X̄αqI , α = 1, 2 (2.12)

With respect to the physical basis, the Green-Lagrangian strain assumes the form

Ēαβ = 1
2
(āα · āβ − δαβ). The physical components of the curvature tensor can be

obtained by the transformation κ̄αβ = ∂ξδ

∂X̄α
κδγ

∂ξγ

∂X̄β
.

The local bases {Ēi} can be selected in many ways, but we recommend aligning

{Ē1} and {Ē2} to the weft and warp directions, respectively.

2.2.2 Constitutive Law

Cloth response is typically inelastic, exhibiting anisotropic properties and a

small to moderate amount of hysteresis [66, 51, 1]. Since large rotation is involved,

the use of finite strain is necessary. Because in-plane strain of fabrics is usually small



www.manaraa.com

20

(< 2%), we assume a linear anisotropic relation between the (in-plane) Piola-Kirchhoff

stress S and the Green-Lagrangian strain E:

S = DE, In Voigt form D =

 d1 d3 0
d3 d2 0
0 0 d4

 (2.13)

An early objection to shell models of fabric materials was that they produce

rubber-like behaviors. In part, this is because the consistent bending equation (m =

h3

12
Dκ) over-estimates the moment. Among other reasons, the actual moment of

inertial of fabric sheets should be smaller than the nominal value h3

12
. The issue can

be resolved by abandoning the consistent bending and using an independent bending

function instead. As a step in this direction, we assume the bending momentum and

curvature in the weft and warp directions have the following relation [1] and ignore

the energy of bending shear.

mI =


sign(κI)2B0

√
κ0|κI |, |κI | ≤ κ0 (2.14)

sign(κI)(B0|κI |+B0κ0), |κI | > κ0 (2.14′)

in which I can be replaced by ‘weft’ or ‘warp’ and B0, κ0 are material constants. The

bending curve is depicted in Figure 2.2. The shape mimics the ascending portion

of a typical fabric bending in Kawabata test [45]. The bending moment in general

depends on curvature change; here, the reference curvature is taken to be zero.

2.2.3 Element Equation

External forces acting on a piece of cloth normally include a body force ρb;

damping force fd (per unit surface area) which is in general a function of the cloth

velocity; and traction forces t̄ prescribed on the boundary edge. Following the textile
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Figure 2.2: Moment-curvature curve in principal space

community convention, we use the surface density ρ to describe the mass distribution;

ρ = ρ0h where ρ0 is the 3D density and h is the cloth thickness. The weak form of

dynamics equilibrium equation is given by∫
Ω

ρδuTadA+

∫
Ω

(hδETS + δκTm)dA =

∫
Ω

(δuT (ρb + fd)dA+

∫
Γt

(δuT t̄)hds (2.15)

In NURBS representation, u = x−X =
∑

I NI(qI −QI), and thus

δu = Nδq, N = [N1I N2I · · · ] (2.16)

where I is the 3×3 identity matrix. The variation of Green-Lagrangian strain, in

Voigt form δE = (δE11, δE22, 2δE12), is derived to be

δE = Bmδq, Bm =

 Bm1
11 Bm2

11 ...
Bm1

22 Bm2
22 ...

2Bm1
12 2Bm2

12 ...

 (2.17)

where

(BmI
αβ )T =

∂Eαβ
∂qI

=
1

2
(NI,βaα +NI,αaβ) (2.18)

Similarly, from the definition of curvature we can derive

δκ = Bbδq, Bb =

 Bb1
11 Bb2

11 ...
Bb1

22 Bb2
22 ...

2Bb1
12 2Bb2

12 ...

 (2.19)
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where

(BbI
αβ)T =

∂καβ
∂qI

= NI,αβa3 +
1

j
[NI,1(a2 × x,αβ) +NI,2(x,αβ × a1)]−

(x,αβ · a3)(NI,1a
1 +NI,2a

2)

(2.20)

In the above, j = ||a1 × a2|| is the area stretch, and (a1, a2) are the bases dual to

(a1, a2), satisfying aα · aβ = δαβ and aα · a3 = 0.

Substituting Eq. (2.16), Eq. (2.17) and Eq. (2.19) into Eq. (2.15) yields the

discrete dynamic equation

Mq̈− fdamp + fint = fext (2.21)

where

M =

∫
Ω

NTNρ dA

fint =

∫
Ω

(
hBT

mS + BT
b m
)
dA

fext =

∫
Ω

NTρb dA+

∫
Γt

NT t̄h ds

fdamp =

∫
Ω

NT fd dA

(2.22)

For low speed air drag we assume that fd = −ηẋ where η is a viscosity constant; in

this case, fdamp = −η
ρ
Mq̇ := −Dq̇.

For numerical integration, we use Gauss quadrature, and each quadrature

domain is a cell from the knot grid of a NURBS patch.

2.3 Multi-patch Model

A tensor product NURBS surface is topologically rectangular, having four

edges. To describe complicated shapes, two methods are commonly used: trimmed
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Figure 2.3: Illustration of G1 multi-patch model

NURBS and multi-patch NURBS. Treatment of trimmed NURBS in isogeometric

analysis has been discussed in some recent papers [49]. We will present trimmed

NURBS in shell analysis in the next section. Here we focus on multi-patch NURBS

and discuss the enforcement of C1 continuity across patch boundaries. By a patch,

we refer to a NURBS unit defined by a tensor product 2D knot domain and the

corresponding control points. A multi-patch model by definition consists of multiple

patches that match along patch boundaries. To use the Kirchhoff-Love element, we

must ensure C1 continuity in physical derivative across the common edge of adjacent

patches. Here, we show that physical C1 continuity can be ensured by satisfying

G1-continuous, a weaker continuity condition [30].

With reference to Figure 2.3, consider two NURBS patches S [1] and S [2] that

connect on a common edge. We restrict the discussion to cases where the two patches

have the same NURBS parameterization in ξ2 direction (the edge direction) and

matching control points on the edge, that is

Q
[1]
nj = Q

[2]
1j , j = 1, 2, ...n2 (2.23)
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Knots in ξ1 are specified individually in each patch, with ξ1 = b being the end knot

of the left patch and ξ1 = a the beginning knot of the right patch. We assume that

degrees in the ξ1 domain are the same in the two patches, and knots a and b repeat

exactly (p+ 1)-times so that the end-point interpolation property holds. In this case,

the NURBS basis functions from both sides match on the common edge:

N
[1]
nj (b, ξ2) = N

[2]
1j (a, ξ2) := Rj(ξ

2), j = 1, 2, ...n2 (2.24)

and that the common edge is determined by either the last column of control points

in the patch S[1], or the first column of control points of S[2]:

S [1](b, ξ2) =

n2∑
j=1

Rj(ξ
2)Q

[1]
nj, S [2](a, ξ2) =

n2∑
j=1

Rj(ξ
2)Q

[2]
0j (2.25)

Since the control points match, we conclude that

S [2](a, ξ2) = S [1](b, ξ2),
∂S [2](a, ξ2)

∂ξ2
=
∂S [1](b, ξ2)

∂ξ2
(2.26)

On the common edge, the derivative with respect to ξ1, in S[1], depends on the last

two columns of control points

∂S [1](b, ξ2)

∂ξ1
=

p

b− ξn
wn−1

wn

n2∑
j=1

Rj(ξ
2)(Q

[1]
nj −Q

[1]
(n−1)j) (2.27)

whereas in S[2],

∂S [2](a, ξ2)

∂ξ1
=

p

ξ̄p+1 − a
w2

w1

n2∑
j=1

Rj(ξ
2)(Q

[2]
2j −Q

[2]
1j ) (2.28)

G1 continuity in ξ1 requires that [30]

∂S [2](a, ξ2)

∂ξ1
= c

∂S [1](b, ξ2)

∂ξ1
(2.29)
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where c is a non-zero constant. This condition states that the tangents in ξ1-direction

at two sides of the edge are parallel, but not necessarily the same magnitude. The

condition (2.29) is satisfied if

Q
[2]
2j −Q

[2]
1j = c′(Q

[1]
nj −Q

[1]
(n−1)j), j = 1, 2, ...n2 (2.30)

where c′ is a constant derived from c and some knots and weights. Invoking the

condition (2.23), we conclude that the two patches are G1-continuous if

Q
[1]
nj = Q

[2]
1j =

Q
[2]
2j + c′Q

[1]
(n−1)j

1 + c′
, j = 1, 2, ...n2 (2.31)

An important implication of G1-continuity is that it implies C1-continuity in

physical derivative. To see this, we first write the derivative conditions in the matrix

form [
∂x[2]

∂ξ1

∂x[2]

∂ξ2

]
=

[
∂x[1]

∂ξ1

∂x[1]

∂ξ2

] [
c 0
0 1

]
(2.32)

where ∂x[2]

∂ξ2
etc. are understood as a column vector and take the value of the common

edge. By construction (cf the local physical basis vectors {Ē1, Ē2} on both sides

match along the edge. Invoking the definition of J in Eq. (2.10), it is clear that,

J[2] = J[1]

[
c 0
0 1

]
(2.33)

By chain rule, it is straightforward to show that

[
∂x[2]

∂X̄1

∂x[2]

∂X̄2

]
=

[
∂x[1]

∂X̄1

∂x[1]

∂X̄2

]
(2.34)

which indicates that C1 continuity is ensured in physical derivatives.
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Carrying out the same analysis on the deformed configuration, it can be con-

cluded that physical C1-continuity is enforced if

q
[2]
1j = q

[1]
nj =

q
[2]
2j + c′q

[1]
(n−1)j

1 + c′
, j = 1, 2, ...n2 (2.35)

In implementation, this condition is treated as a constant on the three columns of

control points. The middle column is replaced by a linear combination of q
[2]
2j and

q
[1]
(n−1)j.

2.4 Trimmed NURBS

The tensor-product NURBS can only represent surfaces with four-edge topol-

ogy. Trimmed NURBS can be used to represent an arbitrary surface. A trimmed

NURBS is defined by a standard tensor product NURBS surface with some closed

curves on the 2D parametric space that defines the boundary of the surface, as shown

in Fig. 2.4. A boundary curve is expressed as follows:

C(t) =

(
ξ1(t)
ξ2(t)

)
(2.36)

In simulation, we need to tessellate the parametric space to subdomains in tri-

angles or quadrilaterals for numerical integration, as shown in Fig. 2.5. We tessellate

the trimmed NURBS in three steps: (1) We tessellate the tensor product NURBS

and the boundary curves. (2) We compute intersection between each NURBS cell

and the boundary curves. And if intersection exist, we cut the cell into two polygons

and discarding the one outside of boundary curve. (3) We split each polygon into

triangles. It should be mentioned that these triangles are used for integration, so

their shape doesn’t influence the quality of shape function and simulation accuracy.
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Figure 2.4: Illustration of trimmed NURBS

(a) (b)

Figure 2.5: Illustration of tessellating trimmed NURBS. (a) A trimmed NURBS in

CAD program; (b) A trimmed NURBS that is ready for analysis

Figure 2.6: Illustration of polygon to triangles
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Here we recommend a good but not unique way to split polygon: for all the

convex corners of the polygon, we calculate the minimum angle α of the triangle

enclosed by the corner. Then corner with the largest α is cut off, and a new polygon

is generated, as shown in Fig. 2.6. The same operation is repeated on the new polygon

again until the polygon degenerates to a triangle.

Because the domain outside the trimming boundary is discarded in integra-

tion and rendering (if the boundary is defined as clock-wise, then the inside part is

discarded), among the control points of the original tensor-product NURBS, a part

of them may have no influence on the simulation results (we call them unused control

points). In order to avoid singularity, we don’t assign freedoms to these unused con-

trol points, and at the end of each time step, we update the displacement of unused

control points to be the same as its closest used control points. The problem is that

some control points have very little influence, say having mass of 10−12. Thus we

create a criteria for unused control points:

AI =

∫
Ω

NIdΩ < ε (2.37)

where Ω represents the domain inside the trimming boundary, and ε is a user-defined

tolerance. In our program, ε is set to be 10−6 times the element size.

2.5 Examples

Because we have not introduced our contact/impact yet, we only present some

simple examples in this chapter. The first example is used to show the ability of

NURBS to capture wrinkles. The second involves multi-patch model and mesh sen-
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sitivity is studied. The third involves in trimmed NURBS. It should be noted that

the examples here are not using quasi-static analysis, but using dynamic integration,

which will be introduced in the following chapter.

2.5.1 Wrinkling in Shear

For a piece of cloth of dimension 0.38m×0.128m, all the edges of the cloth

are fixed, and the upper edge is translated by 3mm in horizontal direction, as shown

in Fig. 2.7. The cloth is represented by a second order NURBS patch with 3332

control points. The displacement will form a parallelogram of approximately uniform

wrinkles at 45◦ to the edges. The half wavelength of the wrinkle ca be predicted by

[93].

λ =

√
πHh√

3(1− ν2)γ
(2.38)

where γ = δ/H and h is the cloth thickness.

Elastic properties of the cloth are taken to be E = 3500MPa, ν = 0.31,

and linear bending model is used with bending stiffness Eb = Eh3/12. The fabric

thickness is h = 0.1mm, and the density is ρ = 1500 kg/m3. The damping coefficient

is 2.0.

The simulation results are reported in Fig. 2.8, where the wrinkle angles are

about 47◦. The analytical wavelength is 25 mm, and the numerical wavelengths are

given in Table 2.1. So the wavelengths obtained by simulation are close the analytical

solution, but they are also influenced by the initial random perturbations.
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Figure 2.7: Wrinkling in shear

Figure 2.8: Wrinkling under shear force

Table 2.1: Wave lengths

wave # wave length (mm)
1 28
2 26
3 26
4 26
5 24
6 25
7 25
8 27
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Figure 2.9: Initial configuration of clothdrapping over a pedestal

2.5.2 Cloth Draping over a Pedestal

This example simulates a piece of round shape cloth with radius 1.0m draping

over a round table with radius 0.5m. Only the cloth part out of the table is modeled

and its inner boundary is fixed, as shown in Fig. 2.9. The cloth is subject to gravity

g = 9.8m/s2 in the vertical direction. The membrane constitutive model uses Saint

Venant-Kirchhoff material with Young’s module E = 70000Pa, Poisson’s ratio ν =

0.3. The bending parameters B0 = 1.8×10−3N ·m, κ0 = 30m−1. The surface density

ρ0 = 0.144kg/m2 and damping constant γ = 3ρ. Fabric thickness h = 0.001177m

and persistent contact layer thickness δ = 0.01m. The friction coefficient µ = 0.2.

The cloth is represented by a second order NURBS patch and three different

mesh sizes are used for simulation. The simulation results are shown in Fig. 2.10.

The wrinkle number of last two models are same, showing that the number of wrinkle

is mesh size independent. The wrinkle number of the first model is one less than the

others, implying that the results converge as mesh refined.
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Figure 2.10: Simulation results of cloth draping over a pedestal.
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Figure 2.11: A trimmed-NURBS

2.5.3 Trimmed NURBS

A piece of cloth of dimension 1m×1m contains four randomly located holes,

as shown in Fig. 2.11. The top edge of the cloth is fixed in vertical direction and

the bottom edge of the cloth is subject to a vertical push p=1.1177 N/m. Material

properties of the cloth are taken to be E = 10000Pa, ν = 0.3, B0 = 3.3× 10−3N ·m,

κ0 = 30m−1. The fabric thickness is h = 0.001177m, and the surface density is

ρ = 0.117 kg/m2. A linear damping force with damping constant η = 0.351. The

cloth is described by a second order NURBS patch with 324 control points. The

time increment ∆t at the beginning of simulation is about 0.0025 s, and it is adjusted

automatically as the cloth deforms. Snapshots at t = 0 s t = 1 s are presented in

Fig. 2.12. This example shows that the trimmed NURBS allows us to describe a

complicated shape with coarse mesh.
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Undeformed at t=1 s

Figure 2.12: Simulation of a trimmed-NURBS

2.6 Conclusions

A NURBS-based isogeometric shell model of cloth is proposed. Leveraging

the geometric smoothness of NURBS, the shell element utilizes only displacement-

degree-freedom (DOFs) and thus saves a half of DOFs compared to the standard shell

element. Continuum constitutive laws are used. To better represent the material

behavior of cloth, the in-plane and the bending response are considered separately,

and anisotropic constitutive law is employed. Compared with spring-based models,

our continuum shell as utilized here can easily represent anisotropic property when

the fabric weft and warp are not aligned with grid lines. Multi-patch models are

also admitted in analysis, and the way to enforce C1 continuity is discussed. The

treatment of trimmed NURBS is also considered. The multi-patch and trimmed

NURBS together ensure that typical NURBS designs from a cloth CAD software can
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be admitted. The results of the numerical examples indicate that the smoothness of

NURBS geometry helps to simulate wrinkles.
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CHAPTER 3
CONTACT/IMPACT SCHEME

3.1 Time Integration

3.1.1 Without Contact and Impact

The dynamic simulation in this thesis is completed by the Verlocity Verlet

scheme, which was first applied to cloth simulation by [16]. The flowchart for time

integration is as follows:

1. Update positions at tn+1 explicitly by
q̇n+ 1

2 = q̇n +
1

2
q̈n∆t,

qn+1 = qn + q̇n+ 1
2 ∆t;

(3.1)

2. Update velocity and acceleration at tn+1 from
Mq̈n+1 +Cq̇n+1 + fint(q

n+1) = fext(t
n+1),

q̇n+1 = q̇n+ 1
2 +

∆t

2
q̈n+1.

(3.2)

This scheme in essence is the Newmark method with β = 0 and γ = 1/2. The

time increment is taken to be α∆x
√
ρ/E, where E = max{d1, d2} is the maximum in-

plane stiffness, α < 1 is a user parameter, and ∆x is the minimum distance between

two NURBS control points. A diagonal mass and damping matrix is used in the

second step to avoid the solution of coupled linear equations.

The second line of Equation (3.1) indicates that the physical meaning of q̇n+ 1
2

is the average velocity during the current time step. Since the position and velocity
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of every continuum point are determined by q and q̇, it can be inferred that

xn+1 = xn + ∆tvn+ 1
2 . (3.3)

3.1.2 With Contact and Impact

When contact or impact occurs, we introduce the contact/impact force fc and

write the weak form of the momentum equation as

Mq̈ = fext − fint + fdamp + fc . (3.4)

The integral of Eq.(3.4) over time interval [tn, tn+1] is given by

q̇(tn+1)− q̇(tn) = M−1

∫ tn+1

tn

(fext − fint + fdamp + fc)dτ . (3.5)

Now we define ic =
∫ tn+1

tn
fcdτ , which represents the contact/impact impulse on the

time interval [tn, tn+1], then

q̇(tn+1)− q̇(tn) = M−1

∫ tn+1

tn

(fext − fint + fdamp)dτ + M−1ic . (3.6)

In the right-hand side of Eq.(3.6), the first term will be evaluated by Newmark

method with γ = 1/2, while the second term will be determined by the contact/impact

model directly (see Section 3.2.2). Then we have

q̇n+1 = q̇n+
1

2
∆tM−1(fnext−fnint+fndamp)+

1

2
∆tM−1(fn+1

ext −fn+1
int +fn+1

damp)+M−1ic , (3.7)

where ∆t = tn+1 − tn.

The right-hand side of Eq.(3.7) can be taken apart into three parts. The first

part is denoted as ˜̇qn+ 1
2 , written in

˜̇qn+ 1
2 = q̇n +

1

2
∆tM−1(fnext − fnint + fndamp) . (3.8)
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˜̇qn+ 1
2 is considered as the average velocity obtained from the momentum equation

without contact/impact force. This operation is the same as the first step of standard

Velocity Verlet, but the results are labeled by a superimposed tilde, representing that

the contact has not yet been accounted. Without contact accounted, the positions at

tn+1 can be advanced by q̃n+1 = qn + ˜̇q
n+ 1

2 ∆t.

The term M−1ic is considered as the second part of the right-hand side of

Eq.(3.7). Let q̇n+ 1
2 denotes the sum of the first two parts, given by

q̇n+ 1
2 = ˜̇qn+ 1

2 + M−1ic . (3.9)

Again, we update positions at tn+1 by q̇n+ 1
2 , written in qn+1 = qn + ∆tq̇n+ 1

2 , or in

qn+1 = q̃n+1 + M−1ic∆t.

From Eq.(3.7), it is straightforward to find out the third part, and have the

following relation:

q̇n+1 = q̇n+ 1
2 +

1

2
∆tM−1(fn+1

ext − fn+1
int + fn+1

damp) . (3.10)

This operation is exactly the same as the second step of stand Velocity Verlet. Note

that this operation doesn’t change the final positions qn+1.

In summary, the Velocity Verlet method with contact and impact is given by:

for time step counter n = 1, 2...

1.1 Update candidate positions at tn+1 explicitly by
˜̇q
n+ 1

2 = q̇n +
1

2
q̈n∆t

q̃n+1 = qn + ˜̇q
n+ 1

2 ∆t

(3.11)
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1.2 Update positions at tn+1 and average velocity by applying contact/impact im-

pulse 
q̇n+ 1

2 = ˜̇q
n+ 1

2 + M−1ic

qn+1 = q̃n+1 + M−1ic∆t

(3.12)

The computation of ic is discussed in Section 3.2.2.

2. Update velocity and acceleration at tn+1 from
Mq̈n+1 + Dq̇n+1 + fint(q

n+1) = fext(t
n+1)

q̇n+1 = q̇n+ 1
2 +

∆t

2
q̈n+1

(3.13)

This scheme was first proposed by Bridson et al. [15]. At the absence of

compact/impact response, this algorithm reduces to the standard Velocity Verlet

method. An important feature of the algorithm is that the contact/impact response

is dealt with in the first substep. The update in the second substep is carried at fixed

configuration, leaving intact the non-penetration state from step one.

Once the update is completed in the NURBS coordinates q, the physical co-

ordinates x follows from the mapping Eq.(2.6). It can be inferred from Eq.(3.11) and

Eq.(3.12), that 
xn+1 = xn + ∆tvn+ 1

2

x̃n+1 = xn + ∆tṽn+ 1
2

(3.14)

This implies that for any point on the cloth, once xn+1 and xn are known, we can

calculate vn+1/2 directly, and vice versa.

In order to establish a robust and efficient contact/impact scheme, we break

contact/impact response into three kinds forces. The first kind is the persistent con-

tact force, which is introduced when the distance between two primitives (including
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nodes, elements, element edges) is smaller than a certain tolerance. The persistent

force maintains a small distance between two primitives and try to avoid penetrations

by keeping the contact pair within the tolerance to expelling them slightly part.

The second kind is impact response. This is called up when the trajectories of

two primitives collide. The impact treatment keep the primitives on the correct side.

While impact treatment succeeds to prevent a penetration, it may cause colli-

sions somewhere else, especially in the multilayer cases. Even if the impact treatment

can stop all the penetrations during simulation, it can’t eliminate self-intersections

in the initial configurations. In these cases, we use the the third type of interaction,

the intersection resorting force, to resolve the tangled cloth.

The three kinds of contact/impact force are introduced one by one in the

following sections.

3.2 Persistent Contact Force

3.2.1 Contact Detection

For the persistent contact, we calculate the smallest distance between a grid

point and a grid cell at the beginning of each time step. The normal vector of the

grid cell is considered as the contact normal, noting to flip the normal vector when

the point is on the back side of the cell.
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Figure 3.1: Illustration of persistent contact region

3.2.2 Contact Response

3.2.2.1 Normal Contact

Given a point xA, the normal distance to the target surface B is defined by

g = (xA−xB) ·n, where xB is the closet projection point and n is the unit normal of

B at that point, pointing to xA. Note that the direction of the normal is not pre-set,

but defined stepwise by the relative position at the beginning of the time step. By

construction, gn = (xnA − xnB) · n ≥ 0. In contact update, the point xA is required to

remain on the same side of the surface B during the time step. The rate of change of

the normal displacement before contact is given by ṽrn = n · (ṽn+1/2
A − ṽ

n+1/2
B ). The

contact condition is characterized as

gn ≤ δ, ṽrn ≥ 0 persistent contact, separating
gn ≤ δ, ṽrn < 0 persistent contact, approaching
gn > δ no contact

(3.15)

It is worth noting that the contact condition is characterized by the configura-

tion xn, not the predictor x̃n+1. In the spirit of explicit formulation, we use the surface

normal n at tn to compute the normal distance at tn+1, namely gn+1 = (xn+1
A −xn+1

B )·n.
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Introduce also vrn = n · (vn+1/2
A − v

n+1/2
B ), the relative normal velocity after con-

tact/impact. By multiplying n on both sides of Eq.(3.14), we have

g̃n+1 = gn + ṽrn∆t

gn+1 = gn + vrn∆t,

(3.16)

Approaching. We assume that at the end of time step the two points in contact

will move at nearly the same velocity in the normal direction, that is vrn ≈ 0. Thus,

gn+1 ≈ gn, according to (3.16)2. For numerical purposes, we take gn+1 to be slightly

greater than gn by setting gn+1 = gn + kd, where k is a small number, 0 < k < 1. It

follows that

vrn =
gn+1 − gn

∆t
=
kd

∆t
(3.17)

Note that the slave point remains on one side of the target surface during the time

step, and thus the impenetration condition is observed.

Separating. In this situation the repulsive force will accelerate the separation, push-

ing the point further away from the surface. We assume that gn+1 = g̃n+1 + kd. It

follows that

vrn =
gn+1 − gn

∆t
=
kd

∆t
+ ṽrn (3.18)

3.2.2.2 Tangential Contact

At the presence of friction, two pieces of cloth in contact/impact may also

exchanges momentum in the tangential direction. The relative tangential velocity is

given by vrt = vr − vrnn. If the frictional impulse is not sufficient to stop tangent

movement, the bodies will slide relative to each other. According to (3.27) and
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(3.30), the normal impulse, in magnitude, is ρAρB
ρA+ρB

|∆vrn| where ∆vrn is given by the

contact/impact law. Thus, if the friction force follows the Coulomb law, the frictional

impulse, in magnitude, is µ ρAρB
ρA+ρB

|∆vrn|, where µ is the frictional constant. It follows

that

∆vAt := vAt − ṽAt = −µ ρB
ρA + ρB

∆vrn

∆vBt := vBt − ṽBt = µ
ρA

ρA + ρB
∆vrn,

(3.19)

from which we conclude that ∆vrt = ∆vAt −∆vBt = −µ∆vrn.

On the other hand, preventing sliding requires a minimum frictional impulse

of ρAρB
ρA+ρB

|ṽrt|. Therefore, tangential sticking occurs if |ṽrt| < µ|∆vrn|, in this case

vrt = 0. Putting them together, the tangential velocity change is given by

∆vrt =


−µ∆vrn if |ṽrt| > µ|∆vrn| (3.20a)

−ṽrt if |ṽrt| ≤ µ|∆vrn| (3.20b)

Finally, the change in relative velocity is given by

∆vr = ∆vrnn + ∆vrtt (3.21)

This result is substituted back to (3.30) to update the velocities of A and B.

3.3 Trajectory Impact Force

3.3.1 Impact Detection

For the trajectory impact, we test the intersections between the trajectories

of a grid point and a grid cell. The trajectory impact test between a point and a

triangle is achieved in the following way. First,we find a time t at which the point

is co-planar with the triangle: therein the current time step. First, we find all the
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Figure 3.2: Impact between a point and a triangle

coplanar time by solving the following cubic polynomial equation

det

∣∣∣∣∣ 1 1 1 1

xnA + ṽ
n+ 1

2
A τ xni + ṽ

n+ 1
2

i τ xnj + ṽ
n+ 1

2
j τ xnk + ṽ

n+ 1
2

k τ

∣∣∣∣∣ = 0 (3.22)

where τ = t− tn. This is a cubic equation for which closed form roots are available.

If a time t ∈ [tn, tn+1] is found, we check whether the point A is inside the triangle.

If so, the solution of t is deemed as the impact time. If multiple impact times exist,

the smallest one is used. The algorithm is illustrated in Figure 3.2.

3.3.2 Impact Response

3.3.2.1 Normal Impact

Impact is determined by the penetration test. The basic assumption for impact

response is that the normal distance gn+1 is zero after impact. Numerically, we

introduce a small separation, taken to be either kδ or gn, whichever is smaller. From
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this condition we can derive

vrn =


0 if gn < kδ

kδ−gn
∆t

if gn ≥ kδ

(3.23)

The first case corresponds to a pure plastic impact. For the second case, we note that

vrn is negative, thus |vrn| = gn−kδ
∆t

. Since g̃n+1 ≤ 0, gn − kδ < gn − g̃n+1. Divided by

∆t, we conclude that |vrn| < |ṽrn|. This shows that the impact is not elastic.

3.3.2.2 Tangential Impact

The velocity change in tangential direction of impact is obtained in the same

way as the contact friction. Finally, the change in relative velocity is given by

∆vr = ∆vrnn + ∆vrtt (3.24)

3.4 Intersection Resorting Force

When there is self-intersections in the current configuration, the resorting

forces are introduced. Suppose a point A on an edge is coincident with a point B on

an element at time tn, we use a resorting force to introduce a relative velocity ∆vr

so that the intersections will reduce globally at tn+1. There are two measurements

for the amount of global intersection: intersection contour length and intersection

area. First, we should make ∆vr on the same direction as the gradient of intersection

length or area for optimizing the intersection reduction. Also, we set the norm of

∆vr as a function gradient norm, given by

|∆vr| = h0
|G|√
|G|+ g2

0

, (3.25)
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in which h0 and g0 are two user defined constants.

More details about intersection detection and resolution will be discussed in

Chapter 4.

3.5 Distributing Contact Forces to Objects

3.5.1 Exchange of Linear Momentum in Lateral Impact

The dynamics of cloth or cloth-like material possesses some unique features

that render the impact problem simpler than that of bulk materials. In most practical

problems, a piece of cloth will be subjected to impulsive forces only, not impulsive

torques. In this case, an impact action will induce a change in linear momentum,

while the angular momentum change is negligible. Thus, if we consider only the

action of impact force (cf. the contact corrector in Sub-problem 1), the impulse

equation becomes

ρv̇ = fimpact (3.26)

The change of linear momentum due to impulse is given by

ρ∆v = i (3.27)

where i =
∫ tn+1

tn
fimpactdt is the total impulse over the time step. It is clear that, a

piece of cloth, despite being a continuous system, follows an impulse equation closely

resembling that of particles. The weak form of this equation reads M∆q̇ = I. It

turns out to be easier to solve the momentum exchange in strong form.

Consider two pieces of cloth (or two sub-regions of the same piece of cloth) in

impact. Let ṽA be the velocity field on cloth A before impact and vA the velocity
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field after impact. The difference ∆vA = vA − ṽA gives the velocity change due to

impact. For a given point A, we determine the contact point B on the target surface

using the methods described later, and in this way we define the contact velocity field

on B. By conservation of linear momentum,

ρA∆vA + ρB∆vB = 0 (3.28)

Note that this is a field equation that holds over the common contact surface. For

later use, we need to relate ∆vA and ∆vB to the change in relative velocity. To

this end, let us denote by ṽr = ṽA − ṽB the relative velocity before impact, and by

vr = vA − vB the relative velocity after impact, and introduce ∆vr := vr − ṽr, the

change in relative velocity. It is straightforward to check that

∆vr = ∆vA −∆vB (3.29)

Solving Eq. (3.28) and Eq. (3.29) together gives

∆vA =
ρB

ρA + ρB
∆vr

∆vB = − ρA
ρA + ρB

∆vr

(3.30)

These two equations will be used in the contact and impact model. Later, we will

determine “impact laws” to related ∆vr to the incoming relative velocity ∆ṽr and

thus determine the velocity changes in A and B during impact/contact. The equation

(3.30) is derived in the context of cloth-cloth contact, however, it applies to cloth-rigid

body contact as well. The latter is recovered by setting the density of the other body

to infinity.



www.manaraa.com

48

3.5.2 Determine Impulse on Control Points

Combining Eq.(3.24) and Eq.(3.30), we can compute the velocity change of

each point when two points impact or contact. But Eq.(3.12) requires determining a

set of impulses located on control points representing the effect of contact or impact.

Consider a point A with interpolation form given by

xA =
∑
I

NI(xA)qI . (3.31)

Suppose there is an impulse i located on point A which is projected to control points

by

icI = NI(xA)i, (3.32)

where icI is the impulse applied on control point I.

If mI represents the lumped mass of control point I, we can yield the velocity

change of control point from the impulse-momentum theorem, given by

∆q̇I =
icI
mI

=
NI(xA)i

mI

. (3.33)

It is straight forward to check that

∆vA =
∑
I

NI(xA)∆q̇I . (3.34)

Substituting Eq.(3.33) into Eq.(3.34) yields

i =
mI∆vA∑
I N

2
I (xA)

. (3.35)

Substituting Eq.(3.35) into Eq.(3.32) yields

icI =
mINI(xA)∆vA∑

I N
2
I (xA)

. (3.36)
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3.6 Axis Aligned Bounding Box Tree

the computation cost of contact/impact detection can be sharply reduced by

a bounding-box tree algorithm. In the contact/impact detection, the time cost is

of order N2 where N is the total number of primitives (the basic geometric unit of

contact/impact detection). If we can assemble all the primitives to a set hierarchical

boxes, then we can only test the primitives and save detecting time significantly.

One of the most commonly used hierarchical structures is an axis-aligned

bounding box tree (AABB tree) [85], in which edges of the box are parallel to the

Cartesian coordinate. In our scheme, we need to check the trajectory intersection or

distance between a point and a triangle. Thus we consider each triangle as a primitive

of our AABB tree. Some literature [15] also detected intersection between two edges,

thus they needed another AABB tree for edges. However, we didn’t do so.

3.6.1 Building the AABB Tree

In order to build the AABB tree, we put all the primitives into the first box,

and recursively subdivid the boxes until each box contains no more than one primitive.

Fig. 3.3 shows the flow chart for building an AABB tree in our program. It is a little

bit different than the common version in literatures. We are only concerned about the

center of the primitives in building topology of the AABB tree. The actual bounding

of primitives is only used in a lazy refitting operation, which will be discussed in the

next subsection. This changing can avoid an endless loop when the centers of two

primitives coincide, and can make subdivision cutting more accurate.
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It should be noted that in trajectory impact checking, we have to include the

whole trajectory of the primitive into its bounding box.

3.6.2 Lazy Refitting

Both cloth and rigid bodies are moving in simulation, and any movement will

change the bounding of primitives. Fortunately, the movement of cloth and rigid

body keeps the mesh topology, so lazy refitting is a good choice. Lazy refitting means

keeping the topology of the initial bounding box tree and only updating the bounding

of every box when primitive moves.

We design two kinds of lazy refitting: lazy refitting of one primitive and lazy

refitting of all primitives. The former is typically used for contact update, and the

later one is typically used for position advance of time integration.

The lazy refitting of the AABB tree utilizes the property that the bounding

of a box is the union of all its son boxes. So in lazy refitting of one primitive, the box

containing this primitive is updated first, and then its parent box is updated recur-

sively until it reaches the top level. The lazy refitting of all primitives is accomplished

by updating boxes level by level from bottom to top.

3.6.3 Fast Intersection Detecting

Once a bounding box is built, we can perform fast intersection or distant

testing between a point and all triangles. First, we calculate the bounding of the

point, considered as a master box. In distant testing, the bounding of a point is

a box with edge length 2δ centered at itself. In trajectory intersection testing, the
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The current box degenerates to a point

For Level=1,2,...

Compute center of each primitive; 
create the first box, labeled as 1st level, and 
point all the primitives to the first box

For every box at current level

Generate two son-boxes by a cutting plane 
orthogonal to the longest axis and locating 
and locating at middle point

The box pointed by current primitive is subdivided

For every primitive 

Point the primitive to the sub-box 
which contains the center of primitive 

At least one box need to be subdivided

No

Yes

No

Lazy refit the whole AABB tree 

Yes

Yes

Calculate bounding of every box at current 
level from the primitive pointing

Figure 3.3: Flow chart of building AABB tree
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bounding of a point is the minimum box containing its trajectory. Then we check

the overlapping of the master box and the bounding boxes in the AABB tree (slave

box). We test from top to bottom, and once a slave box proves to have no overlap,

we discard all of the primitives inside it and its son-boxes. When a slave box with

son-boxes proves to be overlapped, we further detect its son-boxes. When a slave box

without son-boxes proves to be overlapped, we record all the primitives inside it as

candidates, on which a real intersection or distant testing will be performed.

3.7 Examples

Several examples are presented in this section to demonstrate the performance

of the contact treatment. The first tests on the capability of predicting quasi-static

contact pressure. The second example is concerned with cloth draping, a bench-

mark problem for cloth simulation. The third example demonstrates the capability

of complex self-contact handling. Finally a garment-level simulation is presented. All

computations are conducted on a (single processor) laptop computer with 2.4GHz

CPU and 3.0GB memory. A side advantage of NURBS modeling, although not es-

sential for analysis, is that it can be readily rendered and textured in CAD programs.

To demonstrate this point, we have textured the fabrics in Examples 2 to 4 while

presenting the simulation results.

3.7.1 Contact Pressure

Since the contact/impact response laws are not experimentally characterized,

it is imperative to examine whether such laws can at least predict a constant quasi-
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static pressure field and a constant friction force. To check this, a simple con-

tact/impact problem is simulated. A 0.6m×0.6m cloth is dropped to a slope, as

shown in Figure 3.4. The cloth is initially parallel to the slope surface with a distance

0.1m. The in-plane elastic parameters are E = 30000Pa, ν = 0.3. The bending

parameters are selected to be B0 = 3.3 × 10−6N ·m, κ0 = 30m−1. The 3D density

ρ0 = 122.3 kg/m3, and the Fabric thickness is h = 0.001177m, giving a surface den-

sity ρ = 0.144 kg/m2. The damping constant is taken to be η = 0.432 kg/(m2 · s).

The contact layer thickness is δ = 0.001m. For this problem, the minimum value

of frictional coefficient for preventing sliding is µc = tan 30◦. We consider two fric-

tional coefficients, µ = 0.2, and µ = tan 30◦. The cloth is represented by a first order

NURBS patch with 1 by 1 grid, and the four corners of the cloth are labeled as point

1 to point 4.

Figure 3.4: Schematics of the falling cloth problem

Figure 3.5(a) depicts the normal displacement vs. time. As shown, the cloth

surface impacts the slope at about t = 0.2 s, and the impact impulse stopped the cloth
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from falling further down. After the initial impact update, a persistent contact begins

to function. The contact algorithm moves the cloth asymptotically to a distance that

equals to the contact layer thickness.

The contact pressure is computed by p = ρh∆vn/∆t. The analytical value

for static contact is p = ρg cos 30◦ = 1.2217Pa. Figure 3.5(b) plots the pressure vs.

time. After the pressure shock during and shortly after the impact step, the pressure

converges to p = 1.2216Pa, closing to the analytical value.

Figures 3.5(c) and (e) show the tangential displacement vs. time for the two

cases. In case 1, the tangential displacement after the impact step increases quadrat-

ically with time, indicating that the cloth is sliding at a constant acceleration. In

case 2, the tangential sliding is prevented after the impact step.

The friction force per unit area is computed from Ff = ρh∆vt/∆t. The

analytical frictional forces of case 1 and case 2 are Ff = 0.2443Pa and Ff = 0.7053,

respectively. Figure 3.5(d) and (f) indicate that the frictional forces are accurately

recovered.

3.7.2 Cloth Draping over a Sphere

The square cloth of dimension 0.4m×0.4m drapes under its own weight to a

rigid sphere of radius 0.1m, as shown in Fig. 3.6. Material properties of the cloth

are taken to be E = 30000Pa, ν = 0.3, B0 = 7 × 10−6N · m, κ0 = 30m−1. The

fabric thickness is h = 0.001177m, and the surface density is ρ = 0.144 kg/m2. A

linear damping force with damping constant η = 0.288 kg/(m2 · s) is included. The
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Figure 3.5: Flat cloth quasi-static contact. (a) Normal displacement; (b) Normal

pressure; (c) Tangential displacement for µ = 0.2; (d) Friction for µ = 0.2; (e)

Tangential displacement for µ = tan 30◦; (f) Friction for µ = tan 30◦
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Figure 3.5: Continued

contact layer thickness is assumed to be δ = h. The friction coefficient is µ = 0.2.

The cloth is represented by a second order NURBS patch with 1156 control points.

The sphere is represented by a discrete mesh with 2048 cells. The time increment ∆t

at the beginning of simulation is about 0.0003 s, and it is adjusted automatically as

the cloth deforms.

Snapshots of the draping process are presented in Fig. 3.7. Because of the

non-uniqueness of the problem and the sensitivity of the results to model parameters,

it is difficult to compare wrinkles with experiments. Nonetheless, the wrinkles appear

vivid and visually appealing. The CPU time for this simulation is 55 seconds. The

simulation results are rendered using Rhinoceros, a NURBS-based CAD software.

To check the momentum balance, we report the total contact force in the

vertical direction and compare it with the weight of the cloth. The contact force
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Figure 3.6: Initial configuration of the cloth that drapes over a sphere. Left: NURBS

mesh with 2048 cells; right: texture view.

t=150ms t=180ms

t=210ms t=240ms 

t=120mst=90ms

Figure 3.7: Snapshots of draping process.
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in vertical direction is evaluated by FcZ =
∑

I mI∆vI/∆t, where vI is the vertical

velocity of grid point I and mI is its lumped mass (computed from the tessellation

mesh). When the contact force is evaluated each step, the value oscillates even after

the kinetic energy is almost damped out, as shown in Figure3.8(a). This oscillatory

force may be attributed to the fact that balance of linear momentum is not enforced

at the end of each time step. However, when the contact force is averaged over each

frame (a frame = 0.033 s), the contact force appears smooth and converges to the

total weight. See Figure 3.8(b).

3.7.3 Flag Draping

This example is introduced to test the self-contact handling. The flag drapes

down by its own weight from the initial straight position. Without a proper self-

contact treatment, self-penetrations are expected during the later stage of the motion.

The NURBS model is shown in Fig. 3.9. The cloth is represented by a second order

NURBS patch with 140 control points.

The in-plane elasticity parameters are taken to be E = 30000Pa and ν = 0.3.

The bending parameters are B0 = 3.3× 10−6N ·m, κ0 = 30m−1. The mass density

is ρ = 0.144 kg/m2 and damping constant is η = 0.432 kg/(m2 · s). Fabric thickness

is h = 0.001177m, and the persistent contact layer thickness is δ = h. The friction

coefficient is set to be µ = 0.2. The left edge of the flag is fixed.

The time increment ∆t at the beginning of the simulation is set to be 0.0014 s.

The simulation results are shown in Fig. 3.10, rendered in Rhinoceros with texture. In
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Figure 3.8: Total vertical contact force. (a) Evaluated over each time step; (b)

averaged over each frame (0.033s)
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(a) (b)

Figure 3.9: NURBS mesh of the flag

the computation, multiple occurrences of self-contact are logged, and yet the results

show no self-penetration. The CPU time for this simulation is 33 seconds.

3.7.4 A Skirt

A practical garment is modeled. The 2D patches of the skirt design given

in Fig. 3.11 consist of 8 second order NURBS patches. The entire model contains

960 control points. The woman’s body is represented by a discrete mesh of 1755

cells. The membrane constitutive parameters are E = 30000Pa and ν = 0.3. The

bending parameters are B0 = 1.0× 10−5N ·m and κ0 = 30m−1. The mass density is

ρ = 0.144kg/m2 and damping constant is η = 0.432 kg/(m2 · s). The fabric thickness

is h = 0.001177m, and the contact layer thickness is taken to be δ = 0.005m. A

friction coefficient µ = 0.8 is assumed.

The increment ∆t is initially set to be 0.001 s. The garment shape at t = 0.3 s,

when the vibrations are mostly damped out, is shown in Fig. 3.12. The simulation



www.manaraa.com

61

0 ms

500 ms 700 ms

900 ms 1100 ms

Figure 3.10: Snapshots of flag draping
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(a)  2D design of a skirt (b)  Human body

Figure 3.11: 2D design model of a skirt and a human body.

(a) Front view (b) Back view

Figure 3.12: Simulated try-on effect
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for virtual projecting and the following draping all together take 296 seconds of CPU

time.

3.8 Conclusions

A contact/impact scheme is proposed in this chapter. The present scheme is

based on an time integration in which the contact/impact force is singled out from

the momentum equation. The contact/impact forces includes three parts: the persis-

tent contact force, the trajectory impact force, and the intersection resolution force.

Compared with the scheme in literatures, we have a slight change on the persistent

contact force, and we proposed a novel intersection-resolution scheme through mini-

mizing contour area. Numerical examples demonstrated that the current scheme can

accurately predict constant quasi-static pressure field and treat complicated contact

problems effectively.
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CHAPTER 4
INTERSECTION RESOLUTION

4.1 Minimization of Intersection Contour Length

The detection of self-intersections is completed by check the intersections be-

tween each element edge and all the other elements. We follow the assumption in

[4, 89] that no mesh vertex lies exactly in the plane of any non-neighboring mesh

face, and no mesh edge intersects any non-neighboring mesh edge. We probablisti-

cally guarantee this assumption by adding a small amount of random noise to all

vertex positions (actually we also need such noises for buckling simulation). Thus

the intersection between two elements can be classified into two cases, as shown in

Fig. 4.1, where the intersection line segment is denoted as PiPi+1. In order to study

the reduction of contour length, we introduce a relative translation d between to two

elements, and consider element I as reference.

Now we take Pi as example to show how to calculate the intersections. Suppose

the equation of the edge is x = at + b before translation, and it changes to x =

at+ b + d after translation. Suppose the equation of the plane is n ·x + c = 0. Then

we can solve the coordinates of Pi after translation by combine the two equations,

given by

xPi = −n · (b + d) + c

n · a
a + b + d. (4.1)
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III

(a) Case I
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II
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Figure 4.1: Intersection between two triangles.
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In the same way we can obtain the coordinates of Pi+1, given by

xPi+1
=


−n · (b′ + d) + c

n · a′
a′ + b′ + d, case I, (4.2)

−n′ · (b′ − d) + c′

n′ · a′
a′ + b′, case II. (4.2′)

It is straight forward to check that

∂PiPi+1

∂d
=


a⊗ n

a · n
− a′ ⊗ n

a′ · n
, case I, (4.3)

a⊗ n

a · n
− I +

a′ ⊗ n′

a′ · n′
, case II. (4.3′)

Let r = PiPi+1/|PiPi+1| denote the direction of PiPi+1. Because r is perpen-

dicular to both n and n′, and n and n′ don’t change during translating element II, r

also keep unchanged during the translation. Using this property, we have

∂|PiPi+1|
∂d

= r · ∂PiPi+1

∂d
. (4.4)

Substituting Eq.(4.3) and (4.3′) into Eq.(4.4) yields

∂PiPi+1

∂d
=


r · a
a · n

n− r · a′

a′ · n
n, case I, (4.5)

r · a
a · n

n− r +
r · a′

a′ · n′
n′, case II. (4.5′)

For an intersection path, the contour length is the summation of the length of

each line segment on the path. Thus, the gradient of contour length C is expressed

as

∂C

∂d
=

n−1∑
i=0

∂|PiPi+1|
∂d

, (4.6)

where n is the number of vertices on the intersection contour.

4.2 Minimization of Intersection Area

For an arbitrary 3D surface domain Ω, it can be cut into two subdomains by

a “closed contour”. The “closed contour” here means that the contour either closes
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(a) (b)

Figure 4.2: A closed contour divides a domain into two parts.

by itself as shown in Fig. 4.2(a), or ends on the boundary of the domain as shown in

Fig. 4.2(b). We name the subdomain in the left-hand side (look along the director of

the contour) of the contour as Ω+, and the other one as Ω−. And then we define the

signed area as follows:

A+ = The area of Ω+,

A− = −The area of Ω−.

(4.7)

It follows that A+ − A− = The area of Ω. Thus, when the cutting contour is

translated by d, A+ − A− keeps constant, which implies

∂A+

∂d
=
∂A−

∂d
. (4.8)

For triangular meshes, the area of intersection region can be calculated in

element-wise manner. Because our purpose is to compute ∂A+/∂d, we only need

to consider the elements along the intersection contour. In the present context, a
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(a) Type I (b) Type II

(c) Type III (d) One element contains
more than one subchains

Figure 4.3: Intersection segments inside an element. (a), (b), (c) are three types of

subchains. (d) shows an example that one element contains more than one subchains.

segment of an intersection contour is called a “subchain” if this segment belongs to

the same element (we call it “host element”), and this segment cuts the element into

two parts. As both parts of the host element are planar polygons, we introduce a

way to calculate the signed area of a planar polygon. For an arbitrary planar polygon

with vertices {v1v2...vn}, its singed area is given by

A(v1v2...vn) =
n−1∑
i=s

A(Ovivi+1), (4.9)

where O is called reference point, and O can be an arbitrary point in the plane.
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A(Oivivi+1) is the the signed area of the triangle Oivivi+1, given by

A(Oivivi+1) =
1

2
sign (si · n) |si|, (4.10)

in which si = Oivi × vivi+1 and n is the normal vector of the plane.

The relation between a subchain and its host element can be classified into

3 types: (I) the subchain cuts two edges of the element, (II) the subchain cuts one

edge of the element, (III) the subchain cuts zero edge of the element, as illustrated

in Fig. 4.3(a), (b) and (c). It should be noted that even when one element contains

more than one subchians, as shown in Fig. 4.3(d), we still handle the subchains one

by one and don’t need to care anything special. When a subchain cuts the element

k into two parts, we use A+
k and A−k to denote the signed area of the to parts. It is

straight forward to show that

∂A+

∂d
=
∑
k

∂A+
k

∂d
. (4.11)

Now we focus on one of subchains. It can be inferred that ∂A+
k /∂d = ∂A−k /∂d,

so we can focus on either one of the two parts. We use Ω∗ to denote the part which is

focused on (Ω∗k equals either Ω+
k or Ω−k ), and the way to find Ω∗ is as follows: as shown

in Fig. 4.3, in type I and II, the subdomain that doesn’t include the non-intersected

element edge (edges) is Ω∗; in type III, the subdomain inside the subchain is Ω∗. One

property of Ω∗ is that it contains at most one vertex that is not on the subchain.

This property will simplify the area calculation in the following context.

In the loop of calculating the area of a polygon, Eq.(4.9), we need a reference

point O which can be an arbitrary point in the plane. But in calculating A+
k , we
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want to carefully select the reference point so that we only need a loop for the edges

of the subchain, rather than all the edges of domain Ω∗. As shown in Fig. 4.3(a),

for a subchain of type I, we select the common vertex of the host element and Ω∗ as

the reference point. Such a reference point ensures that we can omit the two edges

that contain the reference point in calculating A+
k . For type II, as shown in Fig.

4.3(b), the reference point should be an arbitrary point on the element edge which

is intersected by the subchain. In type III, the reference point can be an arbitrary

point in the element plane.

As each vertex of a subchain owns a global index in the whole intersection

contour, we denote a subchain as {PsPs+1...Pt}, where s and t are the indices of the

first and the last vertex of the subchain, respectively. Thus, the signed area of Ω∗k

reads

A∗k =
t−1∑
i=s

A(OiPiPi+1), (4.12)

in which Oi is same as O.

Finally the gradient of A+ is expressed as

∂A+

∂d
=

n−1∑
i=0

∂A(OiPiPi+1)

∂d
. (4.13)

Thus once the reference point of each intersection line segment is assigned, the

gradient of intersection area can be calculated as easy as the contour length.

We note here that the direction of an intersection contour has influence on

the sign of the area gradient. For the intersection between two different layers, if the

points in Ω− are in incorrect layer order (in the negative side of lower layer or in the
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positive side of high layer), we reverse the sign of ∂A+/∂d. This makes us to place

the cloth in a correct layer order. For the intersections of cloth in the same layer, if

|A+| < |A−|, we will reverse the sign of ∂A+/∂d. This makes us to always remove the

smaller one of the two divided regions. Checking the condition |A+| < |A−| doesn’t

really need to calculate the value of A+ and A−. [4] suggested a flood-fill algorithm to

pick the smaller one quickly and easily. We label the mesh nodes on the intersection

edges first, e.g. the nodes on the left side of the contour are labeled as ‘+1’, and

those on the right side as ‘-1’. The nodes with label ‘+1’ are considered as a seed,

and the ‘+1’ region is advanced to ‘+2’ region by involving the neighboring nodes

of ‘+1’ nodes, and so forth for region +2,+3,... We perform this simultaneously to

‘-1’ region. When one side stops to increase and its area is smaller than the other

one, the smaller side is decided. One detail that [4] doesn’t mention is that when one

node connects to more than one intersection points, we should pick the closest one to

judge its side. Otherwise, the cases in Fig. 4.3(b),(d) will be misjudged.

Now let’s focus on one line segment {PiPi+1}. The coordinates of point Pi is

given by Eq.(4.1). During translating element II, point Oi is not changed, and thus

∂xOi/∂d = 0
¯
. It is straight forward to check that

∂OiPi
∂d

= −a⊗ n

n · a
+ I. (4.14)

Since the direction of PiPi+1 keeps unchanged during the translation, we have

∂PiPi+1

∂d
= r⊗ ∂l

∂d
. (4.15)
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We define the vector operation Ω(a) as follows:

Ω(v) =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 , (4.16)

and then we have the relation Ω(a)b = a× b.

Using Eq.(4.14) and Eq.(4.15), and noting that OiPi × PiPi+1 is in the same

or opposite direction of n, we finally yield

∂A(OiPiPi+1)

∂d
=

1

2
n ·
[

s

l
⊗ ∂l

∂d
+ Ω(PiPi+1)

(
a⊗ n

n · a
− I

)]
, (4.17)

where s = OiPi × PiPi+1, and l = |PiPi+1|.

It should be noted that the change of contour area on element I and element

II are different. We use n′ to denote the normal vector of element II, and use O′ to

denote the reference point of on element II. Noting that ∂xO′/∂d = I, we have

∂A(O′iPiPi+1)

∂d
=

1

2
n′ ·
[

s′

l
⊗ ∂l

∂d
+ Ω(PiPi+1)

a⊗ n

n · a

]
, (4.18)

where s′ = O′iPi × PiPi+1.

4.3 Restoring Force

Section 4.2 only introduces the intersection area of closed contours. For the

unclosed intersection contour, we consider the intersection region as a square of length

C, where C is the contour length. The area minimization vector G is defined as − ∂A
C∂d

,

and then we have

G =


− ∂A

C∂d
, if the contour is closed, (4.19)

−2∂C

∂d
, otherwise. (4.19′)
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(a) (b)

Figure 4.4: Intersection Comtour. (a) normal view; (b) exploded view.

For an intersection contour pair, the two contours coincident but the two

intersection regions are different, as shown in Fig. 4.4. We use GI and GII to

represent the directions obtained from two different intersection regions, and the one

with bigger norm is used for contact response, which means that

G =


GI , if |GI | > |GII |, (4.20)

GII , otherwise. (4.20′)

For the contact response, we use the same scheme as [89]. The velocity change

∆vr is in the same direction as G, and its norm is a function of the norm of G, given

by

|∆vr| = h0
|G|√
|G|+ g2

0

, (4.21)

in which h0 and g0 are two user defined constants.
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4.4 Implementation

Our intersection resolution is performed progressively along the simulation. It

can be integrated with any kind of time integration, and our testing codes use the

implicit-explicit time integration proposed by [15]. The work flow of each time step

is as follows:

1. Detect the intersections; when intersections are detected, we introduce geo-

metric corrections of velocity and position on the points along the intersection

contours.

2. Perform time integration over current time interval, and predict the position

and velocity at the end of current time step.

3. Detect the proximity and trajectory collision; when proximity or trajectory

collisions are found, we correct the position and velocity at the end of current

time step.

It should be noted that the points involved in self-intersection are exempt from

the detection in step 3, so that the collision response will not stop the untangling

correction. Besides, we don’t have detection-correction iteration and RIZ as [15],

because the missed collisions will be handled by the intersection resolution scheme at

the beginning of next time step.
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(a) (b) (c)

Figure 4.5: An example of local minimization of contour length. (a) 0.0s (b) 0.1s,(c)

0.2s.

(a) 0.0s (b) 0.03s

(c) 0.06s

Figure 4.6: Local minimization of contour length.
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(a) 0.0s (b) 0.06s

(c) 0.15s

Figure 4.7: Both contours are closed.

(a) 0.0s (b) 0.12s

(c) 0.24s

Figure 4.8: One contour is closed while the other one is unclosed.
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(a) 0.0s (b) 0.40s

(c) 0.80s

Figure 4.9: Both contours are unclosed.

4.5 Examples

4.5.1 Typical Cases of Intersection Resolution

This section shows several simple examples representing different types of in-

tersections. Fig. 4.5 and Fig. 4.6 shows that the present scheme can easily untangle

two pieces of cloth with local minimization of contour length. Fig. 4.7, Fig. 4.8, Fig.

4.9 show intersected cloth with two, one and none closed contours, respectively. It

is demonstrated that the present method can resolve various kinds of intersections,

including the one with local minimization of contour length.
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4.5.2 Vertical Drape

A piece of cloth of dimension 0.2m×0.5m drapes under its own weight to

the ground , as shown in Fig. 3.6. Material properties of the cloth are taken to be

E = 30000Pa, ν = 0.3, B0 = 1 × 10−6N · m, κ0 = 30m−1. The fabric thickness

is h = 0.002m, and the surface density is ρ = 0.144 kg/m2. A linear damping force

with damping constant η = 0.288 kg/(m2 · s) is included. The contact layer thickness

is assumed to be δ = h. The friction coefficient is µ = 0.2. The cloth is represented

by a second order NURBS patch with 612 control points. The time increment ∆t at

the beginning of the simulation is about 0.0003 s, and it is adjusted automatically as

the cloth deforms.

Snapshots of the draping process are presented in Fig. 4.10. The wrinkles

appear vivid and visually appealing, and no penetration is found between the cloth

and the ground or the cloth itself in the whole simulation process. The CPU time

for the whole simulation is 103 seconds. The simulation results are rendered using

Rhinoceros, a NURBS based CAD software.

4.5.3 Untangle layers of Soft Armors

This sections shows an example of practical multi-layer soft armors. This set

of armors contains three layers, as shown in Fig. 4.11(a). The first layer is a pair

short pants, the second layer is a waist protector, and the third layer is a shirt. The

try-on and draping simulation of each layer is performed separately, and when the

three layers of armors are placed in the same space, we find severe self-intersections,
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0ms 

120ms 

180ms 

Figure 4.10: Vertical drape
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240ms 

300ms 

360ms 

Figure 4.10: Continued
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420ms 

480ms 

540ms 

Figure 4.10: Continued
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600ms 

660ms 

720ms 

Figure 4.10: Continued
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(a) After try-on and draping simulation

(b) Untangled armors

Figure 4.11: Simulation of multi-layer soft armors.
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as shown in Fig. 4.11(b). Then we use the present scheme to untangle the armors and

place the three layers in the correct order. The final simulation results are shown in

Fig. 4.11(c). It is shown that even for complicated intersections, the present method

can still untangle the cloth efficiently.

The material property of this example is taken as follows: The volume density

is ρ = 1440 kg/m3. In-plane stiffness is: E = 1.44× 106 Pa, ν = 0.3; bending rigidity

is: B0 = 0.00371N ·m, κ0 = 30m−1. The damping coefficient is: η = 4.0.

Table 4.1 shows the average time cost per time step. It is found that the cost of

intersection response accounts for no more than 10% in the total cost of intersection

resolution. Compared with the contour minimization method (global version), the

area minimization method only changes the way of contact response, therefore the

extra cost of the present method should even lower than 10%. Actually the time cost

of intersection response is ignorable compared with the total time cost of a time step.

Table 4.1: Average CPU time cost

Job Time cost
Total 145.6 ms

Intersection resolution 18.9 ms
Intersection detection 17.5 ms
Intersection response 1.8 ms
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CHAPTER 5
CONTINUUM-BASED STRAIN LIMITING

5.1 Background of Strain Limiting

A challenge of cloth simulation is that in fabric materials, the material stiffness

in the weft and warp directions is much higher than shear stiffness, and the later is

much higher than bending stiffness. Numerically this leads to a stiff problem, which

is difficult to solve. For Velocity Verlet method, the stable time step is determined by

the highest stiffness, and thus steps have to be very small if the physical properties

are used. The strain limiting technique attempts to use lower stiffness and thus larger

time steps while limiting the cloth stretch. One way to work around is to formulate

cloth as a constrained material (in-extensible or nearly in-extensible in the weft and

warp directions). Classical Lagrangian multiplier method could also be computation

costly because it requires implicit solution of multiplies and the linear system contains

zero diagonal sub-matrix. Recent fast projection method [35], shows advance in

solving such problems. The fast projection method is typically based on augmented

Lagrangian formulation, with a special technique for solving the constraint equation.

A continuum-based fast projection method in NURBS geometry is presented in this

chapter.

The weak form of the momentum equation is given by

Mq̈ = fext − fint + fdamp + fc (5.1)

in which M, fint, fext, fdamp is defined in Eq.(2.22) and fc is the contact force. Let’s
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omit the contact force in this chapter because the contact force can be singled out as

the following substep. The momentum equation without contact is written as

Mq̈ = fext − fint + fdamp (5.2)

Eq.(5.2) is equivalent to a Lagrange problem with the potential function given

by

L(q, q̇) =
1

2
q̇TMq̇− V (q) (5.3)

and V is the total potential energy given by

V (q) =

∫
Ω

1

2
E · DEhdΩ + Vbending + Vexternal (5.4)

Now we consider the weft and warp response as continuum constraints, which

implies the energy terms of weft and warp strain are replaced by constraint conditions

Ewarp = 0 and Eweft = 0.

Numerically, we will enforce the conditions discretely at certain points only.

The constraint vector C represents constraint conditions of all constraint points, given

by

C = (C1,C2, ...Cm)T , (5.5)

and

Ci =
[
Eweft(xi), Ewarp(xi)

]
(5.6)

where m is the total number of constraint points. We will introduce the algorithm of

solving the constrained problems in general case first, and the selection of constraint

points in NURBS geometry will be discussed later in Section 5.4.
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In the context of spring-based model, the constraints on strain are replaced

with the length change of springs. Thus, the grid lines are required to align with the

weft and warp of fabric.

5.2 Augmented Lagrange Method

Consistent with the standard augmented Lagrangian method, we replace the

weft and warp stiffness with a small value rather than remove the energy terms totally.

The problem now becomes a augmented Lagrangian multiplier problem. For general

coordinates r = (qT ,λT ), the potential function is

L(r, ṙ) =
1

2
q̇TMq̇− V (q)−C(q)Tλ (5.7)

and

V (q) =

∫
Ω

1

2
E · D̄EhdΩ + Vbending + Vexternal (5.8)

where the weft and warp stiffness in D̄ is much smaller than D.

The Euler-Lagrange equation is given by

∂L

∂r
− d

dt

∂L

∂ṙ
= 0 (5.9)

Substituting Eq.(5.7) into Eq.(5.9) yields

Mq̈ = −∂V
∂q
− ∂CT

∂q
λ (5.10a)

C = 0 (5.10b)

Suppose we check the constraint conditions at the end of timestep: C(qn+1 =
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0), and use Velocity Verlet method for the time integration of ∂V
∂q

, we have

qn+1 = qn + ∆t

(
q̇n − ∆t

2
M−1∂V (qn)

∂q

)
−∆t2M−1

(
∂C(qn+1)T

∂q
λn+1

)
(5.11a)

C(qn+1) = 0 (5.11b)

Eq.(5.2) can be computed in two steps, given by

1. Introduce the intermediate position q̃n+1 given by

q̃n+1 = qn + ∆t

(
q̇n − ∆t

2
M−1∂V (qn)

∂q

)
(5.12)

2. Calculate the actual position by qn+1 = q̃n+1 + ∆q, and ∆q is solved from

∆q = −∆t2M−1∂C(qn+1)T

∂q
λn+1 (5.13a)

C(qn+1) = 0 (5.13b)

Eq.(5.13a) and (5.13b) are equivalent to δW = 0, where

W =
1

2∆t2
∆qTM∆q + C(qn+1)Tλn+1 (5.14)

The second term of W projects q into the constraint manifold, while the first term

minimizes the change of kinematic energy in this projecting process. All together, q

will be projected to the “closest” point on the constraint manifold.

Linearize Eq.(5.13a) and (5.13b) by the Newton method, we have the following

flowchart:

∆q[0] = 0, λ[0] = 0, for j=0,1,2,... do

1. Solve ∆q and dλ from[
I + ∆t2M−1 ∂C[j]Tλ[j]

∂q∂q
∆t2M−1 ∂C[j]T

∂q
∂C[j]

∂q
0

][
dq
dλ

]
=

[
−∆q[j] −∆t2M−1 ∂C[j]T

∂q
λj

−C[j]

]
(5.15)
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2. Correct q and λ by

∆q[j+1] = ∆q[j] + dq, λ[j+1] = λ[j] + dλ (5.16)

The loop is terminated when the maximum absolute value C is smaller than given

tolerance ε. We note here that we have to solve a (3n+m)-dimensional asymmetric

linear system for each iteration.

5.3 Fast Projection Method

We note that Eq.(5.13a) attempts to do a closet-point projection and Eq.(5.13b)

enforces the constraint conditions. In an actual problem, we have stronger require-

ment on constraint conditions while we can tolerate the end point not being a closet

projection to the constraint manifold. Based on this premise, Goldenthal et al. [35]

suggested solving Eq.(5.13a) by Euler method while solving Eq.(5.13b) by Newtom

method. We expand C by Taylor series at q[j] and ignore the quadratic and higher-

order terms,

C[j+1] = C[j] +
∂C

∂q
dq (5.17)

Substituting Eq.(5.17) into Eq.(5.13a) yields

dq = −∆t2M−1∂C[j]T

∂q
dλ (5.18)

Eq.(5.13b) is still linearized by Newton method,

∂C[j]

∂q
dq = −C[j] (5.19)

Substituting Eq.(5.18) into Eq.(5.19) yields the basic equation of the fast pro-
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jection method

∆t2
∂C[j]

∂q
M−1∂C[j]T

∂q
dλ = Cj (5.20)

The iteration flowchart of fast projection is as follows:

∆q[0] = 0, for j=0,1,2,...

1. Solve dλ from

∆t2
∂C[j]

∂q
M−1∂C[j]T

∂q
dλ = Cj (5.21)

2. Correct q by

∆q[j+1] = ∆q[j] −∆t2M−1∂C[j]T

∂q
dλ (5.22)

The loop is terminated when the maximum absolute value of C is smaller than given

tolerance ε. The advantage of the fast projection method is that (1) we only need to

solve am m-dimensional symmetric positive definite (S.P.D.) linear system for each

iteration; (2) it converges faster.

5.4 Constraint Points

The selection of constraint points is very important to the success of the fast

projection method. Too many constraints will cause kinematic locking, while too few

constraints can not eliminate overstretch effectively.

We tried to select Gauss points as constraint points, but it didn’t work well.

The asymptotic ratio of the number of elements and that of the control points is 1.

The scheme of 2 × 2 Gauss points causes kinematic locking because the asymptotic

ratio of Gauss points to the number of control points is 4. The scheme based one Gauss

point or average strain doesn’t have locking, but both had the hourglass problem. The
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Figure 5.1: Constraint points

hourglass might be suppressed by adding a regulation term to the energy function,

but we decided to pursue a simpler route. At the end, we employed the node-based

constraints. For a regular NURBS mesh, we selected vertices of the knot mesh as

constraint points, as shown in Fig. 5.1. For trimmed NURBS, we constrained the

intersection points between the trimming curves and the knot mesh as well. The

benefit of this scheme is that it doesn’t have locking or hourglass, and it also leads

to a smaller band width in the ensuing linear systems of fast projection method.

5.5 Stress Reconstruction

The constraint energy term λ · C in essence is the nodal integration form of

strain energy. Thus the stress Ŝ should include two terms: the stress from strain S(E)

and the stress from constraint force. The stress on grid point i after fast projection

is given by

Ŝi = Si(Ei) + λi/ai (5.23)

where ai is the nodal area.
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However we found checkerboard pattern in the values of λ. This is mainly

due to the lack of domain integration. Introduce the integration version of constraint

energy may resolve the problem, but we believe that is to costly as the band width

will be heavily enlarged. So we introduce a simple way to reconstruct the stress: by

an interpolation, it is easy to obtain the stress on Gauss points, and then by an ex-

trapolation fromm Gauss points, we can obtain the nodal stress without checkerboard

problem.

5.6 Examples

Several examples are presented in this section to demonstrate the performance

of the proposed method. The first is a benchmark testing the capability of handling

overstretch. The second and the third concern two garment-level simulation. In

order to evaluate the method, we considered three cases for each example: (a) small

stiffness with strain limiting, (b) high stiffness without strain limiting, and (c) small

stiffness without strain limiting. The simulation efficiency is evaluated by the average

CPU-time cost of each frame, and one second of animation contains 50 frames.

5.6.1 Corner Kidnapped Cloth

A piece of cloth initially in the horizontal x-y plane is fixed at two corners

and will swing under gravity in z-direction. The cloth is represented by a second

order NURBS patch with 100 control points. The bending parameters are B0 =

3.3 × 10−3N ·m, κ0 = 30m−1. The mass density is ρ = 0.117 kg/m2 and damping

constant is η = 0.351 kg/(m2 ·s). Fabric thickness is h = 0.001177m. For the in-plane
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model, we assume k = kweft = kwarp = 2.5kshear and test three cases: (a) k/ρ = 100

with strain tolerance ε = 0.01; (b) k/ρ = 5000 without strain limiting; (c) k/ρ = 100

without strain limiting.

The simulation results of all cases at t = 0.6 s, when the cloth passes the

vertical plane for the first time, are shown in Fig. 5.2. The simulation time and strain

summary is shown in Table 5.1. It is observed that case (c) has obvious unrealistic

stretching. The results of case (a) and case (b) are close, but the time increment of

case (a) is much smaller than that of case (b). Because there is no contact involved,

the saving from large time step is not very obvious, but still strain limiting obtains

2.5 times of speeding up.

Table 5.1: Summary of corner kidnapped cloth simulation

Case (a) Case (b) Case (c)
CPU time (sec/frame) 0.13 0.325 0.054

Maximum Eweft 0.015 0.0828 2.24
Maximum Ewarp 0.013 0.0512 2.20
Average Eweft 9.61× 10−4 4.07× 10−3 0.081
Average Ewarp 1.30× 10−3 6.78× 10−3 0.111

5.6.2 Draping of Soft Armor

The draping of a soft armor is simulated in this example. The armor is rep-

resented by a second order NURBS patch with 1616 control points. The initial con-

figuration is obtained by a virtual try-on simulation and is shown in Fig. 5.3. The
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Figure 5.2: Corner kidnapped cloth at t = 0.6.
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bending parameters are B0 = 1 × 10−4N · m, κ0 = 30m−1. The mass density is

ρ = 0.1177 kg/m2, and the damping constant is η = 0.353 kg/(m2 · s). Fabric thick-

ness is h = 0.001177m. The friction coefficient is assumed to be µ = 0.2. For the

in-plane model, we assume k = kweft = kwarp = 2.5kshear and create three cases: (a)

k/ρ = 50 with strain tolerance ε = 0.01; (b) k/ρ = 5000 without strain limiting; (c)

k/ρ = 50 without strain limiting.

In order to show the results more clearly, the simulation results of upper-body

and lower-body armor at t = 0.5 s are shown separately in Fig. 5.4 and Fig. 5.5,

respectively. The simulation time and strain results are summarized in Table 5.2.

For the upper-body armor, case (c) obtains an unacceptable shape while for the

lower body armor, and all three schemes obtain an acceptable shape. By checking

the maximum and average strain, it is found that both case (a) and case (b) obtain

low level of strain, but the time cost of case (b) is four times of that of case (a). This

example demonstrates that the strain limiting method can maintain a low strain level

while reducing the CPU time.

Table 5.2: Summary of soft armor draping simulation

Case (a) Case (b) Case (c)
CPU time (sec/frame) 5.69 25.25 3.47

Maximum Eweft 6.61× 10−3 0.097 0.41
Maximum Ewarp 0.018 0.075 0.34
Average Eweft 2.15× 10−4 5.22× 10−3 0.037
Average Ewarp 1.91× 10−4 3.02× 10−3 0.043
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Figure 5.3: Initial configuration of the soft armor

5.6.3 Draping of a Skirt

This example simulates the draping process of a skirt. The initial configuration

of the skirt is shown in Fig. 5.6. The entire model contains 960 control points.

The woman’s body is represented by a discrete mesh of 17068 cells. The bending

parameters are B0 = 1.0 × 10−5N · m and κ0 = 30m−1. The mass density is ρ =

0.118kg/m2, and the damping constant is η = 0.354 kg/(m2 · s). The fabric thickness

is h = 0.001177m. A friction coefficient µ = 0.8 is assumed. For the in-plane model,

we assume k = kweft = kwarp = 2.5kshear and create three cases: (a) k/ρ = 50 with

strain tolerance ε = 0.01; (b)k/ρ = 3000 without strain limiting; (c) k/ρ = 50 without

strain limiting.

The garment shape at t = 0.8 s, when the vibrations are mostly damped out, is
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(a) Case a (b) Case b

(c) Case c

Figure 5.4: Upper-body armor after draping simulation.
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(a) Case a (b) Case b (c) Case c

Figure 5.5: Lower-body armor after draping simulation.

reported in Fig. 5.7. The simulation time and strain summary is shown in Table 5.3.

It is observed that the cloth is overstretched when low stiffness is used there is no

strain limiting. When E/ρ = 3000 and strain limiting is turned off, the simulation

shape looks visually better, but local overstretching is still very serious. We didn’t

try higher stiffness because it will take too much time. On the other hand, by using

the strain limiting scheme with low stiffness, both the simulation shape and strain

values satisfy the requirement while CPU time is reduced.



www.manaraa.com

99

Figure 5.6: Initial configuration of the skirt

Table 5.3: Summary of skirt draping simulation

Case (a) Case (b) Case (c)
CPU time (sec/frame) 7.4 20.4 8.2

Maximum Eweft 0.0093 0.26 0.64
Maximum Ewarp 0.012 0.13 0.65
Average Eweft 4.12× 10−4 1.42× 10−2 0.073
Average Ewarp 3.79× 10−4 1.04× 10−2 0.10

5.6.4 Patch Test

Finally we study the standard patch test to check the stress obtained from fast

projection method. A 1 m by 1 m square is fixed on the top edge and applied 1 N/m of

uniform force on the bottom edge. As the problem itself is based on dynamic analysis,
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(a) Case a (b) Case b

(c) Case c

Figure 5.7: Skirt after draping simulation.



www.manaraa.com

101

Figure 5.8: Stress of patch test

we model the static patch test by applying a big damping factor and waiting until

the vibration is damped out. Fig. 5.8 shows the static stress obtained from analysis

with or without fast projection method. It is observed that for both cases, the stress

are close to 1 Pa, which means the fast projection method can not only eliminating

unrealistic unrealistic strain, but also provide reliable stress field.

5.7 Conclusions

A continuum-based strain limiting method is developed in this chapter. The

method is based on augmented Lagrangian method, with a fast projection scheme

employed to solve the constraint equation. The constraint conditions are defined on

the basis of continuum stains, and thus, the mesh doesn’t need to be aligned with

weft and warp of fabric. Examples show that small stiffness without strain limiting

typically produces excessive stretches, as expected, and high stiffness requires much
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longer simulation time. The proposed strain limiting method yields small stretch and

visually realistic deformation with reduced CPU time.
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CHAPTER 6
SIMULATION OF SOFT ARMORS

6.1 Integration with Digital Human Body

The NURBS-based cloth simulation was integrated to a digital human envi-

ronment, SantosTM. Santos is a virtual environment for physics-based digital human

modeling and simulation. It has a real human-like appearance with deformable skin,

optimization-based posture, and dynamic motion prediction capabilities. This envi-

ronment can give different types of feedback, such as whether Santos can reach its

target, what the discomfort level is in such a case, and the joint actuator torques in

all joints involved in performing a task [94].

Fig. 6.1 shows the work flow between CAD program, digital human modeling

and cloth simulation. The CAD programs provide design models in NURBS format,

and the digital-human-body program provides a series of snapshots of human bodies.

Additional information for simulation, such as load, material properties, etc., is de-

Digital 
Human Body

NURBS‐based 
Cloth Simulator

CAD

Frames of Human Body

Material & Load Info.

Results in 
Tessellated Form

Armor Design
Results in 

NURBSForm

GUI of Cloth 
Simulation

Figure 6.1: Work flow of cloth simulation
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fined in a GUI of cloth simulation. For convenience of rendering in different software,

we export each of the simulations results in two different versions: tessellated form,

and NURBS form.

6.2 Description of Soft Armor

In this study, we use a soft armor provided by company “Crye Precision” as

example, as shown in Fig. 6.2(a). In order to perform analysis on the NURBS models,

we need some “clean-up” work. First of all, the designing end and the analysis end

have different requirements on the grid density. For a design model, very fine mesh is

used in the region with complicated geometry, while very coarse mesh is used in the

region close to plane. For an analysis model, we require the finer mesh locates on the

region with more complicated mechanics behaviors, such as stress concentration, and

we don’t want the mesh size varies too much within the same model. In addition,

when the model contains more than one pathes, analysis models require a compatible

mesh between the neighboring pathes, while the designers don’t care such issues.

An analysis-ready CAD model is a set NURBS geometries that satisfy the

requirements of isogeometric analysis while keeping the original geometry intact or

nearly intact. We convert a design model to an analysis-ready CAD model by using

the edit tools in CAD program, like Rhinoceros. The major work of such change is to

modify the mesh density and the locations of NURBS isocurves. The analysis-ready

CAD model of the original design is shown in Fig. 6.2(b).

The armor contains 3 layers. The first layer is a pair of short pants, and there
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(a) (b)

Figure 6.2: A set of soft armor. (a) Original design; (b) analysis-ready model.

are 6 patches. The design thickness of this layer is 0.762 mm. The second layer is a

belt, which is composed of a single patch. Its design thickness is 2.29 mm. The third

layer is a shirt-like shape plus a belly protector. This layer contains 6 patches. The

whole armor is represented by 2nd order NURBS surfaces, with 6308 control ponits

and 1 trimmed edge. The connection between different patches is achieved through

our multi-patch model, as discussed in Chapter 2.

The material property of the soft armor in this chapter is taken as follows: The

volume density is ρ = 1440 kg/m3. In-plane stiffness is: E = 1.44× 106 Pa, ν = 0.3;

bending rigidity is: B0 = 0.00371N · m, κ0 = 30m−1. The damping coefficient is:

η = 4.0.
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Figure 6.3: Armor model before try-on simulation

6.3 Virtual Try-on of Soft Armors

Because the armor design model and the digital human body come from differ-

ent systems, they may intersect with each other when they are initially placed in the

same space. The armor can be put on the digital human body by a try-on simulation.

There are two kinds of virtual try-on scheme: the virtual stitching and the virtual

projecting.

Virtual stitching contains three steps. First, the garment patch are placed

around the human body. And then introduce a spring force between the edge pair

which needs to be stitched. Finally perform a simulation and the stitching spring will
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put the garment on the human body.

The way to define the stitching force is not unique, and we only introduce the

linear model. Suppose a pair of edge points A and B should be stitched, and then

the stitching force is given by

fA = k(xB − xA)− ηvA (6.2)

fB = k(xA − xB)− ηvB (6.3)

where k and η are user-defined constants.

The virtual projecting scheme is very simple. We scale and translate the

human body until the garment does not interference with the body. Then during a

simulation process, we linearly project the transformed human body to its original

geometry while letting the cloth to interact with the body. When the process ends,

the garment is put on the body.

When the original design in Fig. 6.2 and the human body were placed in the

same space, lots of overlapping between them were found, as shown in Fig. 6.3.

The try-on simulation of upper body armor was finished by the virtual stitch-

ing, as shown in Fig. 6.4, because we were able to place the patches in a penetration-

free status. The shorts and the belt were put on by virtual stitching, as shown in

Fig.6.5, because it was difficult to get a penetration-free status without morphing

the human body. After try-on simulation of each layers, we used the intersection

resolution method to resolve intersections between different layers. The armors after

the try-on simulation are shown in Fig. 6.6.



www.manaraa.com

108

Figure 6.4: Put the shorts and belt n by virtual stitching

Figure 6.5: Put the upper-body armor on by virtual projecting
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Figure 6.6: Virtually trying on.

6.4 Walking

Starting from the try-on configuration, we deform the human body according

to the frames given by Santos. Typical snapshots of a pace are shown in Fig. 6.7. The

first snapshot, Fig. 6.7(a), is the end of the last pace and the beginning the current

pace. The distance between the two feet attains maximum at this moment. If the

forward torque on the hip-thigh joint is defined as positive, the torque on left leg

should be negative at this moment. Fig. 6.7(b) is taken when the right leg raises to

highest point. The torque on the right leg is expected to reach peak at this moment.

Fig. 6.7(c) is the end of current pace. The whole simulation contains 3 paces, and

the other 2 paces are presented in the same way.

Fig. 6.7 also plots the contact forces as arrows. The directions of the arrows

represent the directions of contact forces and the lengths of the arrows represents the
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(a) 0.00s (b) 0.25s (c) 0.50s

Figure 6.7: Contact forces of soft armor during walking

norms of the contact forces. It is observed that the contact forces mainly distribute

on shoulder and thigh. The forces on the shoulder resist the gravity of the armor,

while the forces on the thigh drive the pants to move forward or backward. We also

find that the magnitudes of the contact forces on thighs are smaller or comparable

with that on shoulders.

We are especially interested in the additional torque required by the soft armor

on hip-thigh joints. The torque history is ploted in Fig. 6.8. The forward torque is

defined as positive and the backward torque is defined as negative. Thus at the

beginning, the torque of the left leg is positive and that of the right leg is negative.

We find the torque on right leg arrives to peak at 0.25s, snapshot (b), when the right
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Figure 6.8: Torques on hip-thigh joints

leg is raised to the highest position. The torque history is periodical and symmetric,

as the motion itself.

By measurement, we know that the weight of the upper body armor is 1.43 kg,

and the width of shoulder band is 77 cm. Thus the approximate static stress in the

shoulder area should be 91N/m. The first principle stress (in-plane) is ploted in

Fig. 6.9. In the simulation results, the dynamic stress in the shoulder area is around

100N/m, except stress concentration part. The maximum stress roughly is in the

range from 200 to 300 N/m, and the maximum stress appears in shoulder and pants.

The additional stress is caused by the dynamic movement and the contact forces from

human body.

We conducted a mesh-dependence study by evaluating the joint torques ob-

tained from two meshes. We use two meshes: except the mesh in Fig. 6.2(b), we
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(a) 0.00s (b) 0.25s

(c) 0.50s

Figure 6.9: Principle in-plane stress (N/m) of soft armor during walking
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Figure 6.10: A coarse mesh for convergence study

created a coarse mesh with 1932 control points is shown in Fig. 6.10. Fig. 6.11 plots

the torques of both meshes. Except the beginning time, the results of the fine and

coarse mesh are close.

We also conducted the parametric study. The thickness of the armor is one

of the most important design parameter, as it influences the comfortable level, the

cost and the protection ability. Based on the original design, we cut the thickness

by half, and we assume the bending rigidity is proportional to the cubic of thickness.

Fig. 6.12 shows some snapshots of “thin” armor. First of all, we find the contact

force reduce dramatically, compared with Fig. 6.7. We also find more wrinkles in the

pants, which is the consequence of the reduction of bending rigidity.

Fig. 6.13 plots the comparison of torques of the two designs. We find the

torques required by the armor are reduced when the thickness is halved, but the
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Figure 6.11: Influence of mesh size to the torques on hip joints
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(a) 0.00s (b) 0.25s

(c) 0.50s

Figure 6.12: Contact forces of soft armor (1/2 design thickness) during walking



www.manaraa.com

116

tendency remains similar. The peak values of the “thin” armor is about a third of

the original design.

6.5 Stair Climbing

Starting from the try-on configuration, the soft armor is simulated when the

human body climbs stairs. Fig. 6.14 plots the beginning and the end of a pace. The

first snapshot, Fig. 6.14(a) is taken when the left leg raises to a higher step. At this

time the torque on the left leg should be the maximum, while the torque on the right

leg should be very small. Fig. 6.14(b) is taken when the right leg raises to a higher

step. At this time the torque on the right leg should be the maximum, while the

torque on the left leg should be very small. The whole simulation contains 2 paces,

and the configuration at 1.2s is same as the beginning time.

Fig. 6.14 also plots the contact forces as arrows. It is observed that the

contact forces mainly distribute on shoulders and thighs. The forces on the shoulders

resistant the gravity of the armor, while the forces on the thighs drive the pants to

move forward or backward. We also find that the magnitudes of the contact forces

on thighs are a little bit higher than that on shoulders. The contact forces on legs

during climbing stairs are higher than that during walking, because climbing stairs

needs to bend the pants more severely.

The first principle stress (in-plane) is ploted in Fig. 6.15. In the simulation

results, the dynamic stress in the shoulder area is around 100N/m, except stress

concentration part, comparable to the static stress. The maximum stress is about
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Figure 6.13: Influence of thickness to the torques on hip joints
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(a) 0.0s (b) 0.6s

Figure 6.14: Contact forces of soft armor during climbing stairs
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(a) 0.0s (b) 0.6s

Figure 6.15: Principle in-plane stress (N/m) of soft armor during climbing stairs

300 N/m, and the maximum stress appears in the edge of the raised pant.

Fig. 6.16 plots the torque history of hip joints. At the end of each step,

the torque on the raised leg reaches to peak value and the torque on the other leg

approaches to zero, which agrees with our expectation. The torques at 1.2s are close to

0.0s, and a little bit bigger (absolute values). This is because the motion is periodical

and the acceleration at 1.2s is bigger. Compared to walking, it is found that the peak

value of stair climbing is higher, because the pants are bended more severely in stairs

climbing.

We also conducted the parametric study. Again, the thickness is halved based

on the original design. Fig. 6.17 shows some snapshots of “thin” armor. First of all,

we found the contact force reduce dramatically, compared with Fig. 6.14. We also

find more wrinkles in the pants, which is the consequence of the reduction of bending
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Figure 6.16: Torques on hip joints during climbing stairs

rigidity.

Fig. 6.18 plots the comparison of torques of the two designs. We found the

torques required by the armor are reduced when the thickness is halved, but the

tendency remain similar. The peak values of the “thin” armor is about a third of the

original design, which implies the additional torque on hip-thigh joint is proportional

to the bending rigidity.

6.6 Aiming

Starting from the try-on configuration, the soft armor is simulated when the

human body aims to ground. Fig. 6.19 plots 3 snapshots of the process. Fig. 6.19

also plots the contact forces as arrows. Again the contact forces mainly distribute on

shoulders and thighs. Because the body leans to the left side, the contact forces on

the right shoulder is much bigger than that on the left side. The contact forces on
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(a) 0.0s (b) 0.6s

Figure 6.17: Contact forces of soft armor (1/2 design thickness) during climbing stairs
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Figure 6.18: Influence of thickness to the torques on hip joints
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legs during this motion is comparable with that during climbing stairs.

The first principle stress (in-plane) is ploted in Fig. 6.20. In the simulation

results, the dynamic stress in the shoulder area is around 100N/m, except stress

concentration regions, comparable to the static stress. In snapshot (a), the maximum

stress appears in the bottom of bicep, because the arm pressed the armor at this

moment. In snapshot (b) and (c), the maximum stress appears in the left hip because

of the stretch of the pants.

Fig. 6.21 plots the torques on the hip-thigh joints during the motion. Unlike

the previous periodical torques, the torques ascend monotonously as the body gets

down. It is observed that the left hip bears more torque than the other one. This is

because the body leans to the left side.

We also conducted the parametric study. Again, the thickness is halved based

on the original design. Fig. 6.22 shows some snapshots of “thin” armor. First of all,

we found the contact forces reduce dramatically, compared with Fig. 6.19. We also

find more wrinkles in the pants, which is the consequence of the reduction of bending

rigidity.

Fig. 6.23 plots the comparison of torques of the two designs. The change

of the torques presents similar tendency as the previous motions and the maximum

torque of the “thin” armor is about a third of the original design.
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(a) 0.00s (b) 0.25s

(c) 0.50s

Figure 6.19: Contact force of soft armors during aiming
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(a) 0.0s (b) 0.25s

(c) 0.50s

Figure 6.20: Principle in-plane stress (N/m) in aiming with armors
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Figure 6.21: Torques on hip joints during aiming

6.7 Conclusions

The isogeometric cloth method was integrated with the predictive human

model. The flowchart between CAD programs, digital human body and cloth sim-

ulation was introduced. The method was applied the analysis of a soft armor. The

simulation of soft armor by far is a relative new field. In this chapter, the armor was

put on the human body, and several motions were simulated. Mechanical metrics,

such contact forces, torques, stresses, were reported by the simulation. The influence

of armor thickness to the mechanical metrics was also studied.

The armor in this study contains three layers. The ability of simulating multi-

layer armors is attributed to the new intersection resolution method and a robust

self-contact treatment.

The convergence study was conducted, which demonstrated the simulation
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(a) 0.0s (b) 0.25s

(c) 0.50s

Figure 6.22: Contact force of soft armors (1/2 design thickness) during aiming
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Figure 6.23: Influence of thickness to the torques on hip joints
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results are convergent. This is an important difference between the current method

and the mass-spring method.

Parametric studies were also conducted. By changing the thickness, different

torques and contact forces are obtained. In the design process, this can help the

designers to choose an optimized thickness, which can not only satisfy the protection

requirement, but also satisfy the comfort requirement.

In coupling with the digital human program, the torques and the contact forces

will influence the motion of human body. For example, if the human body feels a big

contact force in walking, he might decide to shorten the pace length.
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CHAPTER 7
CONCLUSIONS

A NURBS-based isogeometric method for cloth simulation is developed. This

method includes a displacement-only NURBS Kirchhoff-Love shell model, a compre-

hensive contact/impact treatment algorithm, and a continuum-based fast projection

method. These techniques all together significantly improve the capability of the con-

tinuum cloth simulation. A number of examples, including garment level simulations,

are presented to show the performance. They demonstrated that the present method

is robust, efficient, and versatile. As the first step towards a design application the

method has been applied to soft armour modeling. It enables virtual try-on modeling

as well as human-driven dynamic simulation.

A direct benefit of isogeometric method is that its geometry keeps consistent

with the CAD model, which provides convenience in connecting the design and analy-

sis. Another advantage of NURBS shell element is the high order of global continuity.

This not only brings us smooth and visually plausible simulation results, but also en-

ables us to simulate curved wrinkles with relative “large” elements. The spring-mass

method can provide vivid pictures and animations in movie industry, but in the field

mechanical design, like the design of armors, it is not accurate enough. As noted in

[63], the lack of mesh convergence is a typical issue in spring-mass models. Compared

with spring-mass method, NURBS model are more expensive in elastic energy com-

putation, however, since the computation cost for elastic energy accounts only a small

portion of the entire simulation cost, the isogeometric method is still competitive as
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a design tool.

Contact and impact model is a bottle-neck in cloth simulation. When devel-

oping suitable algorithms for cloth, certain characteristics of cloth contact must be

considered. In this work, we found it useful to break the contact responses into three

subcases. In our approach, contact/impact interaction is broken out into three sub-

types: persistent contact, trajectory impact, and intersection resolution. The first is

essentially a smoothed treatment of lateral contact since the contact force is described

by a smooth function over a fictitious contact thickness. The second captures the tra-

jectory impact and stops the cloth particles to pass though cloth surfaces. The third

can resolve cloth self-intersections, which may come from the initial configuration.

The breakdown may seem unnatural and complicated at the fist glance, but it indeed

enhances the robustness and efficiency of cloth simulation. The contact treatment

is implemented in an operator-splitting framework wherein the three subtypes are

handled sequentially. This implementation does not entail complicated computation

structure. The price, however, is time step size and accuracy.

The method of intersection resolution is another contribution of this work. The

traditional approach defines the resorting force in the same direction as the gradient

of intersection length. This approach works for many cases, but the minimization of

intersection length may not result in elimination of intersections in some cases, such

as local minimization. This work develops an intersection area minimization method,

which doesn’t suffer any problem of local minimization. Examples demonstrate that

this method is reliable and efficient.
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This work also developed a continuum-based fast projection method. Since

the traditional projection method was developed on the base of mass-spring model,

here the method has been extended to continuum model. Examples demonstrate that

the present method can largely improve the simulation efficiency.

7.1 Outlook

Although the current method presents significant improvements to the con-

tinuum approach of cloth simulation, there all still several limitations that call for

future improvement.

1. All the study is focused on thin shell models. Soft armor may not be “thin”,

and in some occasions it may be better described by continuum element.

2. Simulations were not validated by experiments. Dynamic motions of cloth may

be difficulty to validate physically because of the intrinsic non-unique nature

of the motion. The deformation of cloth is a unstable buckling process, which

are sensitive to material parameters, boundary/initial conditions as well as al-

gorithmic setting. Nonetheless. there could be motions that can be used for

validation. This will be left as a future study.

3. When cloth/body interaction is simulated, only the cloth side is considered as

deformable models. The influence of the armor to the movement of human body

is not considered.

4. This study doesn’t concern any fiber-level model. The fiber-level simulation can

optimize the braiding structure and thus improve the macro-scale properties.
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For the armor material, Kevalar, the fiber modeling can be used to study the

penetration mechanics. This is another direction of future study.

5. The material parameters and thickness in the current program are a constant in-

side one patch. Because of special designs and the random nature of fabrics, the

materials and thickness sometimes are required to be defined as a distribution

function over a patch. The definition of such function can utilize the parametric

space of NURBS patch. This work will be studied in the near future.
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shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation, SCA ’03, pages 62–67, Aire-la-Ville, Switzerland, Switzer-
land, 2003. Eurographics Association.

[37] David Harmon, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun. Robust
treatment of simultaneous collisions. In ACM Transactions on Graphics (TOG),
volume 27, page 23. ACM, 2008.

[38] Min Hong, Min hyung Choi, Sunhwa Jung, and Samuel Welch. Effective con-
strained dynamic simulation using implicit constraint enforcement. In In Inter-
national Conference on Robotics and Automation, pages 4520–4525, 2005.

[39] Donald House, Richard W. Devaul, and David E. Breen. Towards simulating
cloth dynamics using interacting particles. International Journal of Clothing
Science and Technology, 8:75–94, 1996.

[40] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, fi-
nite elements, NURBS, exact geometry and mesh refinement. Computer Methods
in Applied Mechanics and Engineering, 194:4135–4195, 2005.

[41] T.J.R. Hughes, A. Reali, and G. Sangalli. Efficient quadrature for NURBS-based
isogeometric analysis. Computer Methods in Applied Mechanics and Engineering,
199(5 - 8):301 – 313, 2010.

[42] CLO Virtual Fashion Inc. http://www.marvelousdesigner.com.

[43] Kwang jin Choi and Hyeong seok Ko. Research problems in clothing simulation.
CAD, 37:585–592, 2005.

[44] Jonathan M. Kaldor, Doug L. James, and Steve Marschner. Simulating knitted
cloth at the yarn level. In ACM SIGGRAPH 2008 papers, SIGGRAPH ’08, pages
65:1–65:9, New York, NY, USA, 2008. ACM.



www.manaraa.com

138

[45] S. Kawabata. The Standardization and Analysis of Hand Evaluation. The Textile
Machinery Society of Japan, Osaka, 1980.

[46] M. Keckeisen, S.L. Stoev, M. Feurer, and W. Strasser. Interactive cloth simula-
tion in virtual environments. In Virtual Reality, 2003. Proceedings. IEEE, pages
71 – 78, march 2003.

[47] J. Kiendl, K.-U. Bletzinger, J. Linhard, and R. Wüchner. Isogeometric shell
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